ok st "‘\}o'

01\ Yo
J Tl '
MADRAS INSTITUTE OF TECHNOLOGY W],D‘{
ANNA UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRESS THROUGH KNOWLEDGE

IT7411 - OPERATING SYSTEMS LABORATORY
LAB MANUAL
REGULATION - 2015

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 1|Page

Vision of the Department

To educate students with conceptual knowledge and technical skills in the field of
Information Technology with moral and ethical values to achieve excellence in an academic,

industry and research centric environment.

Mission of the Department

1. To inculcate in students a firm foundation in theory and practice of IT skills coupled with
the thought process for disruptive innovation and research methodologies, to keep pace with
emerging technologies.

2. To provide a conducive environment for all academic, administrative, and interdisciplinary
research activities using state-of-the-art technologies.

3. To stimulate the growth of graduates and doctorates, who will enter the workforce
as productive IT engineers, researchers, and entrepreneurs with necessary soft skills, and
continue higher professional education with competence in the global market.

4. To enable seamless collaboration with the IT industry and Government for consultancy and
sponsored research.

5. To cater to cross-cultural, multinational, and demographic diversity of students.

6. To educate the students on the social, ethical, and moral values needed to make significant

contributions to society.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 2|Page

Program Educational Objectives (PEO)

After completion of the B.Tech. (IT) course, students will be able to:

PEOL: Demonstrate core competence in basic engineering and mathematics to design,
formulate, analyse, and solve hardware/ software engineering problems.

PEO2: Have insight in fundamental areas of Information Technology and related engineering
with an inclination towards self-learning to address real-world problems using digital and
cognitive technologies.

PEO3: Collaborate with industry, academic and research institutions for product and research
related development.

PEOA4: Imbibe high professionalism, effective communication skills and team spirit to work
on multidisciplinary projects, in diverse professional environments.

PEOS: Practice IT solutions following technical standards with ethical values.

Program Specific Outcomes(PSO)

PSO1: To apply programming principles and practices for the design of software solutions in

an internet-enabled world of business and social activities.

PSO2: To identify the resources to build and manage the IT infrastructure using the current
technologies in order to solve real world problems with an understanding of the trade-offs
involved in the design choices.

PSO3: To plan, design and execute projects for the development of intelligent systems with a

focus on the future

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 3|Page

IT7411 OPERATING SYSTEMS LABORATORY LTPC
0042

OBJECTIVES:
e To learn about the basic commands of operating systems
e To learn various process management schemes in operating systems
e To practice with the important memory management mechanisms in operating system
e To implement the file handling techniques in operating systems

Exercises

1. Basic unix commands such as Is, cd, mkdir, rmdir, cp, rm, mv, more, Ipr, man, grep, sed,
etc.,

. Shell script

. Process control System calls - demonstration of fork, execute and wait
. Thread management

. Thread synchronization

. Deadlock avoidance using semaphores

. Interprocess communication using pipes

. Interprocess communication using FIFOs

. Interprocess communication using signals

10. Implementation of CPU scheduling policy in Linux

11. Implement a memory management policy in Linux

12. Implement a file system in Linux

13. Linux kernel configuration

©O© 00 NO Ol WwWwN

TOTAL: 60 PERIODS
OUTCOMES:
On Completion of the course, the students should be able to:
e Learn the concepts to identify, create and maintain the basic command in operating
systems
e Express strengths and limitations of various managements schemes in operating
systems
e Explain the core issues of operating systems
e Implement algorithms of operating systems.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 4|Page

Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Program Outcomes(POs)
(6{0) PSO1 | PSO2 | PSO3

516 |7 |8 (9 |10 |11 |12

Learn the 1 /1 (0 |0 |0 |O 0 2 2 2 2

concepts to

identify, create

and use the

basic command

in operating

systems

Familiarize 1]o [o o o o Jo [1 |2 2 2

strengths and

limitations of

various

managements

schemes in

operating

systems

Implement core 3 /1o o fo o |1 |1 |2 2 2

concepts/ issues

of operating

systems

Implement 3 /2 2 o o]o |1 [1 |2 2 2

algorithms of

operating

systems

Exploration of 3 /2]2 1o fo o |1 |1 |2 2 2

memory

management

methodologies

Exploration of 3 [3 [3 |1 oo |1 [1 |2 2 2

interprocess

communication

strategies

IT7411 — OS LABORATORY (4/8 B.TECH —1IT) 5|Page

GRADING RUBRIC FOR LABORATORY COURSES

Good Marks
(81%-100%0)

Average Marks
(50%0-80%0)

Satisfactory Marks
(< 50%)

Continuous

Assessment

(Covers Preparedness,
Basic implementation,
Ability to adapt additional

features and coding
standards) (Max
Marks:25)

Presence of detailed
procedure, coding samples
with proper
implementation.

Able to adapt the changes in
the code quickly.

Proper Coding Style.

Clarity of the procedure
and coding samples are
average with partial
implementation. Able to
understand the changes
but unable to implement it.
Fairly presented code with
medium standards.

Lack of detailed procedure
as well as coding samples
with incorrect
implementation.

Unable to adapt the changes
in coding.

Coding standards are not
followed. Code is messy.

Laboratory Test (Covers
Understanding of problem,
Basic Problem Solving and
Ability to code, test, run
and debug within the
stipulated time) (Max
Marks:25)

Problem understood clearly
and solved.

Complete implementation
with proper test data within
the stipulated time.

Problem understood but
problem solving is not full-
fledged.

Completion of three fourths
of the implementation with
proper test data.

Lack of understanding and
problem-solving ability is
poor.

Implementation not
completed/ Partial
implementation within the
stipulated time.

Course Oriented
Laboratory Project
(Covers Problem

Selection,

Demonstration of the
Project, Wide coverage of
concepts in the target
language) (Max
Marks:25)

Selection of good real time
problem with Complete
implementation with in-
depth understanding on the
concepts implemented.
Wide coverage of concepts
in the target language.

Selection of good real time
problem with partially
complete implementation
and good knowledge on the

concepts implemented.
Moderate coverage of
concepts.

Selection of fair problem
with incomplete
implementation. Lack of
proper knowledge and
understanding on the

concepts implemented.
Limited coverage of
concepts.

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

6|Page

S.NO NAME OF THE EXPERIMENT
1. INTRODUCTION TO OPERATING SYSTEMS
2. LINUX COMMANDS FILE SYSTEM
3. SHELL PROGRAMMING BASICS
4. SHELL SCRIPTING — OPERATORS, FUNCTIONS
5. SHELL ARRAYS
6. PROCESS SYSTEM CALLS — FORK, EXIT, WAIT
7. INTERPROCESS COMMUNICATION USING PIPE
8. INTERPROCESS COMMUNICATION USING NAMED

PIPE

9. MULTITHREADING USING PYTHON
10. FILE ALLOCATION STRATEGIES

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 7|Page

EXNO: 1 INTRODUCTION TO OPERATING SYSTEMS

AIM
To the study the functions of an operating system.
1.1 OVERVIEW

An Operating System (OS)(as shown in Fig 1) is an interface between a
computer user and computer hardware. An operating system is a software
which performs all the basic tasks like file management, memory management,
process management, handling input and output, and controlling peripheral
devices such as disk drives and printers.

Some popular Operating Systems include Linux Operating System,
Windows Operating System, VMS, OS/400, AlX, z/OS, etc. Following are some
of important functions of an operating System:

e Memory Management

e Processor Management

e Device Management

e File Management

e Security

e Control over system performance
e Job accounting

e Error detecting aids

e Coordination between other software and end users.

E3Ea ED

4 \ 4 Y

‘ B

| System Application
Softwares Softwares |
Software 1) l
[Operating System J
A
(" ™\
Hardware L cPU Jl RAM “ 1/0 J
\\— 5

Figure 1. Operating System

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 8|Page

1.2 LINUX OPERATING SYSTEM

Linux is a free and open source operating system and it is a clone version
of UNIX operating system. It is open source as its source code is freely
available. It is free to use. Linux was designed considering UNIX compatibility.
Its functionality list is quite similar to that of UNIX.

1.2.1 LINUX ARCHITECTURE

i N

Applications Compilers

Shell
“ Applications a.out

—_— | Hardware J '—%-{
| \ \ f | J
| v.\‘\ : \\‘. | -\\/ "l‘ / / / "l'
\ \ \ / /s
\ v \‘x __./ /"/ date /
o .

grep

Figure 2. Linux OS Architecture

The architecture of a linux system consists of the following layers -
Hardware layer

Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).
Kernel

It is the core component of Operating System, interacts directly with
hardware, provides low level services to upper layer components.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 9|Page

Shell

An interface to kernel, hiding complexity of kernel's functions from users.
The shell takes commands from the user and executes kernel's functions.

Utilities
Utility programs that provide the user most of the functionalities of an
operating systems.
1.2.2 COMPONENTS OF A LINUX OPERATING SYSTEM
Linux operating system has primarily three components:

Kernel

Kernel is the core part of linux. It is responsible for all major activities of
this operating system. It consists of various modules and it interacts directly with
the underlying hardware. Kernel provides the required abstraction to hide low
level hardware details to system or application programs.

System Library

System libraries are special functions or programs using which
application programs or system utilities accesses Kernel's features. These
libraries implement most of the functionalities of the operating system and do
not requires kernel module's code access rights.

System Utility

System Utility programs are responsible to do specialized, individual level
tasks.

mux Operating Svstem \

System User User

Softwares | Process Utility
A A A

Compilers

System Libraries

]
Kernel J
J

\1 Kernel Modules

A

Hardware l cPU H RAM J[1o J

Figure 3. Linux Operating System

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 10|Page

1.2.3 KERNEL MODE VS USER MODE

Kernel component code executes in a special privileged mode called
kernel mode with full access to all resources of the computer. This code
represents a single process, executes in single address space and do not
require any context switch and hence is very efficient and fast. Kernel runs each
processes and provides system services to processes, provides protected
access to hardware to processes.

Support code which is not required to run in kernel mode is in System
Library. User programs and other system programs works in User Mode which
has no access to system hardware and kernel code. User programs/ utilities
use System libraries to access Kernel functions to get system's low level tasks.

1.2.4 BASIC FEATURES
Following are some of the important features of linux operating system

e Portable

Portability means software can work on different types of hardware in
same way. Linux kernel and application programs supports their installation on
any kind of hardware platform.

e Open Source

Linux source code is freely available and it is community based
development project. Multiple teams work in collaboration to enhance the
capability of Linux operating system and it is continuously evolving.

e Multi User

Linux is a multiuser system means multiple users can access system
resources like memory/ ram/ application programs at same time.

e Multiprogramming

Linux is a multiprogramming system means multiple applications can run
at same time.

e Hierarchical File System

Linux provides a standard file structure in which system files/ user files
are arranged.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 11|Page

e Shell
Linux provides a special interpreter program which can be used to execute
commands of the operating system. It can be used to do various types of
operations, call application programs. etc.

e Security

Linux provides user security using authentication features like password
protection/ controlled access to specific files/ encryption of data.

1.3 COMPARISONS BETWEEN LINUX OS WITH DIFFERENT OS
1.3.1 LINUX VS WINDOWS
Linux OS

Linux could be a free and open supply OS supported operating system
standards. It provides programming interface still as programme compatible
with operating system primarily based systems and provides giant selection
applications. A UNIX operating system additionally contains several severally
developed parts, leading to UNIX operating system that is totally compatible
and free from proprietary.

Windows OS

Windows may be a commissioned OS within which ASCII text file is
inaccessible. it's designed for the people with the angle of getting no
programming information and for business and alternative industrial users. it"s
terribly straightforward and simple to use.

The distinction between Linux and Windows package is that Linux is
completely freed from price whereas windows is marketable package and is
expensive. Associate operating system could be a program meant to regulate
the pc or computer hardware.

Linux is an open supply package wherever users will access the ASCII
text file and might improve the code victimisation the system. On the opposite
hand, in windows, users can’t access ASCI| text file, and it's an authorized OS.

Let’s sees that the difference between Linux and windows:

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 12|Page

S.N | LINUX WINDOWS
1. | Itis an open source operating It is a commercial operating
system system (closed source)
2. | In linux, monolithic kernel is used | In windows, micro kernel is used.
3. | In the comparison of file system, | Windows are slower compared to
linux runs faster even with older Linux
hardware
4. | Linux files are ordered in a tree In windows, files are stored in
structure starting with the root folders on different data drives like
directory. C:D: E:
5. | Itis customizable It is not possible to customize the
windows OS
6. | It supports multiple desktop It supports only preinstalled
environments desktop environment
7. | Itis more secure than windows Vulnerable to viruses and malware
attacks.
8. | Booting takes either primary or In windows, booting supports only
logical partition in linux primary partition

1.3.2 LINUX VS MAC
Linux

Linux is a group of open source Unix-like operating systems which was
developed by Linus Torvalds. It is a packaged of Linux distribution. Some of the
mostly used Linux distribution are Debian, Fedora and Ubuntu. It was basically
written in C language and assembly language. Kernel used in Linux is
Monolithic kernel. The target systems of Linux distributions are cloud
computing, embedded systems, mobile devices, personal computers, servers,
mainframe computers and supercomputers. The first version of Linux was
launched in 1991.

MAC

Mac OS is a series of proprietary graphical operating systems which is
provided by Apple Incorporation. It was earlier known as Mac OS X and later
OS X. It is specifically designed for Apple mac computers. It is based on Unix
operating system. It was developed using C, C++, Objective-C, assembly
language and Swift. It is the second most used operating system in personal
computers after Windows. The first version of macOS was launched by Apple
in 2001.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 13|Page

https://www.geeksforgeeks.org/c-language-set-1-introduction/
https://www.geeksforgeeks.org/difference-between-supercomputer-and-mainframe-computer/

Let's sees that the difference between Linux and mac:

S.N | LINUX MAC
1. | Itis an open source operating It is a commercial operating
system system (closed source)
2. | Inlinux, monolithic kernel is used | MacOS is based the Xnu hybrid
micro kernel
3. | Itisused as OS, as server provide | Mac is an operating system
platform to run other application provides platform to run other
application
4. | Itis customizable It is not possible to customize the
Mac OS

5. | It supports many flavours like
RedHat, Ubuntu, Fedora, Suse,
etc,

It does have any flavours.

6. | It supports multiple desktop
environments like GNOME, KDE,
Mate, Budgie, Cinnamon, Deepin
etc,...

It supports only preinstalled
desktop environment

1.3.3 LINUX VS UNIX
Linux

Linux is an open source multi-tasking, multi-user operating system. It was
initially developed by Linus Torvalds in 1991. Linux OS is widely used in
desktops, mobiles, mainframes etc.

Unix

Unix is multi-tasking, multi-user operating system but is not free to use
and is not open source. It was developed in 1969 by Ken Thompson team at
AT&T Bell Labs. It is widely used on servers, workstations etc. Following are
the important differences between Linux and Unix.

Let’s sees that the difference between Linux and windows:

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 14|Page

S.N | LINUX UNIX
1. | Itis an open source operating It is a licensed OS (closed source)
system
2. | Itis developed by linux community | It was developed by AT and T Bell
of developers labs
3. | Linux uses KDE and Gnome. Other | Unix was initially a command
GUI supported are LXDE, Xfce, based OS. Most of the unix
Unity, Mate. distributions now have Gnome.
4. | Bash (Bourne Again SHell) is Bourne Shell is default shell for
default shell for Linux. Unix.
5. | Its flavours are RedHat, Ubuntu, Its flavours are SunQOS, Solaris,
Suse, Kali Linux, etc,... HP-UX, AlX, Sco Unix, etc,...
6. | Linux is used in wide varieties from | It is mostly used on servers,
desktop, servers, smartphones to workstations or PCs.
mainframes.

1.4 SCHEDULING OF JOBS IN OPERATING SYSTEM

Job scheduling is the process of allocating system resources to many
different tasks by an operating system (OS). The system handles prioritized job
gueues that are awaiting CPU time and it should determine which job to be
taken from which queue and the amount of time to be allocated for the job.

This type of scheduling makes sure that all jobs are carried out fairly and
on time. Most OSs like Unix, Windows, etc., include standard job-scheduling
abilities. A number of programs including database management systems
(DBMS), backup, enterprise resource planning (ERP) and business process
management (BPM) feature specific job scheduling capabilities as well.

1.5 PROCESS MANAGEMENT

Process management involves various tasks like creation, scheduling,
termination of processes, and a dead lock. Process is a program that is under
execution, which is an important part of modern-day operating systems. The
OS must allocate resources that enable processes to share and exchange
information.

It also protects the resources of each process from other methods and
allows synchronization among processes. It is the job of OS to manage all the
running processes of the system. It handles operations by performing tasks like
process scheduling and such as resource allocation.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 15|Page

1.6 PROCESS ARCHITECTURE
Stack

The stack stores temporary data like function parameters, returns
addresses, and localvariables.

Heap

It allocates memory, which may be processed during its run time.
Data

It contains the variable.
Text

It includes the current activity, which is represented by the value of
the Program Counter.

1.7 MEMORY MANAGEMENT IN OPERATING SYSTEMS

Memory management is the functionality of an operating system which
handles or manages primary memory and moves processes back and forth
between main memory and disk during execution. Memory management keeps
track of each and every memory location, regardless of either it is allocated to
some process or it is free. It checks how much memory is to be allocated to
processes. It decides which process will get memory at what time. It tracks
whenever some memory gets freed or unallocated and correspondingly it
updates the status.

The operating system takes care of mapping the logical addresses to
physical addresses at the time of memory allocation to the program. There are
three types of addresses used in a program before and after memory is
allocated —

1. Symbolic addresses

The addresses used in a source code. The variable names, constants,
and instruction labels are the basic elements of the symbolic address space.

2. Relative addresses

At the time of compilation, a compiler converts symbolic addresses into
relative addresses.

3. Physical addresses

The loader generates these addresses at the time when a program is
loaded into main memory.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 16|Page

1.8 SYSTEM CALLS IN OPERATING SYSTEMS

System call is a mechanism that provides the interface between a
process and the operating system. It is a programmatic method in which a
computer program requests a service from the kernel of the OS. System call
offers the services of the operating system to the user programs via API
(Application Programming Interface). System calls are the only entry points for
the kernel system. For example, if we need to write a program code to read data
from one file, copy that data into another file.

The firstinformation that the program requires is the name of the two files,
the input and output files. In an interactive system, this type of program
execution requires some system calls by OS.

e First call is to write a prompting message on the screen.
e Second, to read from the keyboard, the characters which define the two files.

1.9 DAY TO DAY USAGE OF OPERATING SYSTEMS

The operating system is used everywhere nowadays especially such as
banks, schools, colleges, universities, govt. organizations, IT companies,
mobile, etc, ...

No device can operate without an operating system because it controls
all the user’'s commands. Linux /unix operating systems is used in bank because
it's very secure operating systems.

Symbian OS, windows mobile, I0OS and Android OS are used in mobile
phones operating systems as these operating systems are a lightweight
operating systems.

RESULT

The architecture and features of an operating system has been studied
successfully.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 17|Page

EX.NO: 2 LINUX COMMANDS FILE SYSTEM
AIM

To study and implement about the various basic linux commands.
|. FILE RELATED COMMANDS

1. cat

e The cat command is used to create a file.
e The cat command is used to display the contents of a file.

e The cat command is also used merge multiple files into a single file

Syntax
$ cat > filename (Create a new file)
$ cat <filename> (Display the contents of file)

$ cat filel file2 >file3 (merge the contents of filel, file2 into file 3)

1.1 File Creation & Display its Contents using cat command
'mlntr‘ % YV Linc xV._E:gApe = Y,_om; x'_g'oiff x'_g?wn:- * '0The x Y_'z’:;?wrx x

&~ C | [1 www.tutorialspoint.com/unix_terminal_online.php

\ .
<§'y codingground Unix Terminal Online (Bash Shell 4.3)

BiPLY EABY cooiIND

F=]---

Terminal

sh-4.3% cat >mit.txt

MIT is a green campus of AU.
e

sh-4.3% cat mit.txt

MIT is allgreen campus of AuU.

19loid maN v

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 18|Page

1. 2 Files Merging using cat command

& C' | [www.tutorialspoint.com/unix_terminal_online.php

N\ .
<E"5/ codingground Unix Terminal Online (Bash Shell 4.3)

S BIMPLY EAGY COODOING

Terminal

sh-4.3% cat »au.txt

g

sh-4.3% cat »ind.txt

India is a my country

o

sh-4.3% cat mit.txt ind.txt >test.txt
sh-4.3% cat test.txt

109loid MaN

MIT is a green campus of AU.
India is a my country
sh-4.3% |}

2.ls command
e Listing files and directories
e The Is command is used to display the contents of a directory.
Syntax
$Is > View the contents of directory

2. Displaying Files and Folders
EWIH' x Vil x VDA x V(@O0 x VB0 x VW x V@0Th x VoW x VB0 x Vearr x Y [he

“~ C' | [1 www.tutorialspoint.com/unix_terminal_online.php

DimePLY EASY CODING

N .
<§'§/ codingground Unix Terminal Online (Bash Shell 4.3)

=
Terminal

sh-4.3% 1s
README.txt au.txt ind.txt krish mit.txt pugazh ram test.txt vpm

sh-4.3% |

10loid MaN v

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 19|Page

3. clear command

e This command is used to clear the terminal screen

e $clear

[I. DIRECTORY RELATED COMMANDS
1. mkdir

e This command is used create an empty directory in a disk

Syntax
$ mkdir <dname>

1.1 Empty Directory Creation
Vu: Y Yo: Y@ Ye=t Yov Yo Yoo Y@ Vi

& C [www.tutorialspoint.com/unix_terminal_online.php

N -
@ codingground Unix Terminal Online (Bash Shell 4

SiMmPrLY EADY CooING

P=]—-

Terminal

sh-4.3% mkdir salem
sh-4.3% 1s salem
sh-4.3% 1s -1 salem
total e

sh-4.3% |}

100loid MaN v

2. rmdir

e This command is used remove a directory from the disk

Rules for Directory Deletion

e Directory must be empty
e Directory can't be current working directory

Syntax
$ rmdir <dname>

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 20|Page

2.1 Empty Directory Deletion
Jwir- "wo Y@A YBo Yo Y@w Yonw Y¥@w 8o pi

% C | [§ www.tutorialspoint.com/unix_terminal_online.php

N =
@ codingground Unix Terminal Online (Bash Shell 4.3)

SBIMPLY EADY COODING

Terminal

.3% 1s

Axt inf

.3% mkdir test
.3% 1s

.Ixt inf test
.3% rmdir test

103loid MaN

.3% 1s

.txt inf

.3% rmdir test

failed to remove "test’': No such file or directory

.3%

3.cd
e This command is used to move from one directory to another directory.

Syntax
$ cd <dname>

3.1 Changing the Working Directory

g’ﬁil Vit 'f??t ‘{ggc 'fg't Yg?» Yq)1 Yﬁ?» Ygg} Y;;F

€« C' [www.tutorialspoint.com/unix_terminal_online.php

N .
<t’;y codingground Unix Terminal Online (Bash Shell 4.3)

SIMPLY EASDY COODINO

Terminal

bash-4.3% pwd

/home/cg/root

bash-4.3% 1s

Lumia README.txt inf pugazh

J0loid MaN

bash-4.3% cd Lumia
bash-4.3% pwd
/home/cg/root/Lumia
bash-4.3% |}

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 21|Page

4. pwd
e pwd stands for "print working directory"
e This command is used to print the current working directory

Syntax
$ cd <dname>

4.1 Displaying Current Working Directory
Pu: Ve Ye: Y@ Yo" Yov Yor Yew]

“— C' [www.tutorialspoint.com/unix_terminal_online.php

N
<§D} codingground Unix Terminal Online (Basl

S LY EASY cCooING

Terminal

bash-4.3% pwd
/home/cg/root/Lumia

109l01d MaN

bash-4.3% |}

lll. General Purpose Commands
1. date command

e This command is used to display the current date with day, month, date,
time (24 Hrs clock) & year

o $date
1. Output
Vidr Ywe Y2 Y@c Ye"o Yov Yo Yo
<« C' | [3 www.tutorialspoint.com/unix_terminal_online.php

SiIMPLY EASY cCooING

N -
<:’a) codingground Unix Terminal Online (Bz

o

Terminal

bash-4.3% date
Wed Jul 8 88:17:16 EDT 2015

100[01d MON

bash-4.3% |}

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 22|Page

2. cal command

2.1 Displaying Current Month

Linux calendar

This command is used to display the current month, all months of

particular year
$ cal

$ cal 2015 (Show all months in year 2015)

(Show the current month of current year)

103loid MaN

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

@ codingground

» 0IMPLY CASY CODING

P=]---

Terminal

bash-4.3% cal
July 2015
Su Mo Tu We Th Fr Sa
1 2 3 4
s 6 7 910 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

bash-4.3%

Unix Terminal Online

(Bash Shell 4.3)

23|Page

2.2 Displaying Entire Year

»> BIMPLY CEASY CODING

@ codingground

=]

Terminal

bash-4.3% cal 20e8

323loid maN

January
Tu We Th
Al vACE
8 910
15 16 17
22 23 24
29 30 31

April
Tu We Th

203
8 9 10
15 16 17
22 23 24
29 30

July
Tu We Th
1 2 3
8 9 10
15 16 17
22 23 24
29 30 31

October

Mo Tu We Th

1 2

5 6 7 8 9
12 13 14 15 16

3. tty command

Unix Terminal Online (Bash Shell 4.3)

2008

February
Tu We Th

5 6 7
12 13 14
19 20 21
26 27 28

May
Tu We Th
1
6 7 8
13 14 15
20 21 22
27 28 29

August
Tu We Th

5 6 7
12 13 14
19 20 21
26 27 28

November
Tu We Th

March
Tu We Th

4 5 6
11 12 13
18 19 20
25 26 27

June
Tu We Th

3 4 5
10 11 12
7 -
24 25 26

September
Tu We Th
sl =Y L
9 190 11
16 17 18
23 24 25
30

December
Tu We Th
2 3 4
9 10 11
16 17 18

e The tty (teletype) command is used to print the current terminal name

o $ity

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

24|Page

3.1 Displaying Terminal Name

\
<€_y codingground Unix Terminal Online (Bash Shell 4.3)

> OIMPLY CASY CODOING

=

Terminal

bash-4.3% tty
/dev/pts/@
b

ash-4.3%

3oaloiq maN

RESULT

Thus the linux commands have been studied and executed
successfully.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 25|Page

EXNO: 3 SHELL PROGRAMMING BASICS

AIM
To execute the fundamentals of shell programming such as control flow
statements.

EXISTING PROBLEM

e |t is not possible to perform more than one task at a time using shell
command

SHELL SCRIPTS (MULTITASKING)

e In order to solve the problems of shell command, the shell programming
Is introduced here

e Doing more than one job at a time (multitasking)

e ltis also called as shell programming

VARIABLES SECTION
e Names given to the memory location

e Shell program supports dynamic data typed system which means that
no need to use specific data type for variables declaration

Syntax

Variable-Name=lInitial-Value

Example
a=10 # integer type
str="Sachin” # string type
c="G’ # character type
f=true # boolean value
readonly id=14 # integer constant

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 26|Page

|. EXAMPLE OF DATA TYPES IN SHELL CODE
SOURCE CODE

str="Sachin"
flag=true

readonly id=99

echo "Int\t\t\t\t-> $a"

echo "Float\t\t\t-> $b"

echo "Character\t\t-> $c"
echo "Name\t\t\t-> $str"
echo "Boolean\t\t\t-> $flag"
echo "Int Constant\t-> $id"

2. OUTPUT

Console Shell

+ sh datatype.sh

Float
Character
Name
Boolean

Int Constant

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 27|Page

COMMENT LINE STATEMENTS

e Usually these statements are ignored by compiler or interpreter

e Like c/c++, shell supports two types of comment line statements. They
are

1. Single line statement
2. Multi line statements
1. Single line statement
e The single line statement is indicated by # symbol in shell program
Example

This is single line statement

2. Multi line statements

e Itis used to ignore more than one statements
e Thisis indicated by :’ " symbol in shell program
Example

Variable Declarations
a=20
k=25

SELECTION STATEMENTS

1. Simple If statement
2. If else Statement
3. If else if Statement

4. Case Statement

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 28|Page

1. Simple If Statement
Syntax

if [condition]
then
true statement

fi

e |tis an important to note that, the space should be given before and after
the operator symbol [

e You can use test keyword instead of the operator symbols []
2. If else Statement

Syntax

if [condition]
then

true statement
else

false statement

fi

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 29|Page

3. If...elif...else Statement

Syntax

if [condition]
then

true statement
elif [condition]
then

true statement
else

false statement

fi

e |tis an important to note that, the simple if, if else and if-elif-else should
be closed by fi keyword.

4. Case Statement
e Itis equivalent to switch case statements in ¢ language
e Itis used to execute several statements based on the value of expression
e This is done by using the reserved word case

e Itis an alternative option for if..elif..else statements
Syntax

case <variable> in
Pattern 1)

Commands / statements
Pattern 2)

Commands / statements

easc

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 30|Page

Where,

’ - represents the break part in case statements

LOOPING STATEMENTS

1. While loop (while)

2. Until loop (until)
3. For loop (for)
1. While loop
Syntax

while [condition]
do
true statement

done

Infinite While loop

e Itis an important to note that, the colon (:) operator or true keyword is
used for creating an infinite loop

e The colon (:) operator is used instead of the operator symbols | |

[I. EXAMPLE OF INFINITE LOOP USING WHILE LOOP

SOURCE CODE
while :

do
echo "Hello World"
done
(OR)
while true
do
echo "Hello World"

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 31|Page

done

OUTPUT

73]
i)

Console

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 32|Page

2. Until loop
e Here loop is executing until the condition is false
e If the condition becomes true it will exit from the loop

Syntax

until [condition]
do
true statement

done

[ll. EXAMPLE OF UNTIL LOOP
SOURCE CODE

echo "\t\tUntil Loop Example"

echo I "
i=1
until [$i-gt 5] Here the looping statements are executed
do until the condition becomes fail like 1>5,
echo $i 2>5, 3>5, 4>5, 5>5
i="expr $i + 1°
done

This loop will terminate whenever the
condition becomes true like 6>5

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 33|Page

OUTPUT

Console Shell

+ sh until.sh

1
3
4
3

3. For loop
Syntax

for variable in w1 w2 ... wn
do
true statement

done

Where,
Variable can be any user defined name
w1 w2 ...wn - list of the values separated by spaces

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 34|Page

IV. EXAMPLE OF FOR LOOP
SOURCE CODE

echo "\t For Loop Example"

eChO e i mn
foriin12 141517 18 21
do
echo $i
done
OUTPUT
Console Shell

» sh forl.sh

V. CHARACTERS AND STRING RETRIEVAL USING FOR LOOP
SOURCE CODE

foriin'Sachin''B'"C" "D" ‘E’
do

echo $i
done

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 35|Page

OUTPUT

GNU bash, version 4.4.20(1)-release (x86 64-pc-linux-gnu)
+ sh for2.sh

VI. DISPLAYING FILES AND DIRECTORIES USING FOR LOOP
SOURCE CODE

ECNO Memmmmm e e e e eeee
fset="Is" : : : :
k=1 Store list of files to the variable fset using
- Is command.
foriin $fset
do
. @

k="expr $k + 1°
done

9
(- -
0 Command Substitution:
Storing the output of command to a user defined variable.
This is done by using the operator ‘command™ or $(command)
J

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 36|Page

OUTPUT

. armstrong.sh
. astrong.sh
. au
Gl
. fact.sh
. forl.sh
. for2.sh
. for3d.sh
. main.sh
. menup.sh
. mit.txt
. oslab
. rev.sh
. tes.txt
. while.sh

VII. FACTORIAL OF A NUMBER

Language : shell (.sh)
Editor : replit.com (Online Linux Terminal)
OR) : Windows 10

SOURCE CODE

echo "\t\tFactorial Program"

€Ch0 "-mmmmm e !
echo "Enter a number : "

read n

i=0

f=1

while [$i -It $n]

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 37|Page

do

i="expr $i + 1
f="expr $f * $i°
done
echo "The Factorial of $n is : $f"

OUTPUT

Console Shell

Enter a number :
[

The Factorial of 6 is :

C STYLE CODING IN SHELL

¢ In shell, we can use c style coding for looping statements and
expressions

e The expressions are defined by $(exp). Here each is also closed by ()
symbol.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 38|Page

VIIl. FACTORIAL OF A NUMBER USING C-STYLE

SOURCE CODE

€CN0 Mmoo
echo "\t\tFactorial Program- C Style"
€CN0 Mmoo
echo "Enter a number : '

read n

i=1

f=1

while [$i -le $n]
do

F=$((f*i))

i=$((i+1))
done
echo "Factorial of $n is $f"

OUTPUT

Enter a number :
5

Factorial of 5 is
* sh factl.sh

Enter a number :
6

Factorial of & 1is

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

39|Page

IX. REVERSE OF A NUMBER

SOURCE CODE

echo "\t\tReverse of Number"
€ChOQ "-m=mmemmemem e

echo -.EW Read a number
read n

while (n!=0)

duplicate=$n
res=0 /
while [$n -ne 0]

rem=n%310

do /

res=res*10

rem="expr $n % 10°

res="expr $res + $rem’

res="expr $res * 10°

n="expr $n/ 10" «— L

n=n/10

done
echo "The Reverse Number of $duplicate i

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

s $res"

40|Page

OUTPUT

Enter a number :

6724
The Reverse Number of 6724 is @

Enter a number :
45
The Reverse Number of 45 is

Enter a mumber :

12662
The Reverse Number of 12662 is @

X. ARMSTRONG NUMBER

SOURCE CODE

echo "\t\tArmstrong Number"

€ChO "----mmm e !
echo "enter a number"

read n

dup=$n while (n!=0)
arm=0

while test $n -ne 0

rem=n%10
" /

rem="expr $n % 10
rem=(rem*rem*rem)
-

rem="expr $rem * $rem * $rem"

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 41|Page

arm="expr $arm + $rem’

n="expr $n/ 10°
<\[n=n/10
done

if [$dup -eq $arm]
then

echo "Given Number $dup is Armstrong Number"
else

echo "Given Number $dup is not Armstrong Number"
fi

OUTPUT

Console Shell

enter a number
153

enter a number
283
Given Number|\283 is not Armstrong Number

Xl. MENU DRIVEN PROGRAM
SOURCE CODE

while [true]
do

echo "1. View Files \t 2.Date"
echo "3. Users List \t4.Calendar"
echo "5. Exit"

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 42|Page

echo "\tEnter ur choice : "'
read ch

case $chin
1) Is;;
2) date;;
3) wi;
4) cal;;
5) exit;;
esac

echo "Do you want to continue : Press Yes/No"
read ch
if [$ch ="yes"] || [$ch ="Yes"] || [$ch = "YES"]
then
continue
else
exit
fi
done

NOTE

e |t is an important to note that, the single equal operator (=) is used for
string comparison and the symbol —eq or == is used for number
comparison in the shell program.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 43|Page

OUTPUT

w
1]

Console

2.Date
4.Calendar

1. View Files
3. Users List
5. Exit
Enter ur choice :

1

armstrong.sh au fact.sh menup.sh
astrong.sh big.sh main.sh mit.txt
Do you want to continue : Press Yes/No

2.Date
4.Calendar

1. View Files

3. Users List

5. Exit
Enter ur choice :

3

05:10:41 uwp 1:47, 0 users,

USER TTY FROM LOGINE

Do you want to continue : Press Yes/No

2.Date
4.Calendar

View Files
U=sers List
Exit

Enter ur choice :

April 2021
Mo Tu We Th Fr

1

5 8
12 5
19 20 21 22

26

continue : Press Yes/No

2.Date
4.Calendar

View Files
3. Users List
5. Exit
Enter ur choice :
%
Thu Zpr 29 05:10:57 UTC 2021
Do you want to continue : Press Yes/No

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

oslab
rev.sh

ITLE JCPU

tes.txt

load average: 8.98, 7.29, 6.29

PCPU WHAT

44|Page

OUTPUT - (CON)

Do you want to continue : Press Yes/No

. View Files 2.Date
3. Users List 4.Calendar
. Exit
Enter ur choice :

COMMAND LINE ARGUMENTS (POSITIONAL PARAMETERS)

e Process of passing the input arguments to the program at the time of
execution is called as command line arguments

¢ In shell, this is done with help of $ symbol

S.N | POSITIONAL DESCRIPTION
PARAMETERS

1. | $0 Indicates the filename itself

2. |$1 Indicates the first argument

3. | $2 Indicates the second argument

4. | $* Represents the total number of input arguments
which are submitted to the shell program

5. | $# Shows the count of total number of arguments
passed to the shell program

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 45|Page

|. EXAMPLE OF COMMAND LINE INPUTS
SOURCE CODE

ECHO M- "

a=$1

b=$2

if [$# -ne 0]

then \[This is equivalent to if [$# = 0]
r="expr $a + $b°

echo "Sum is: $r"
else

echo "No inputs are submitted...Please submit the CMD inputs..."
fi

OUTPUT

Console Shell

* sh cmd.sh 4 5

No inputs are submitted...Please submit the CMD inputs...

3l

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 46|Page

Il. EXAMPLE OF COMMAND LINE INPUTS —= MUCH ARGUMENTS
SOURCE CODE

if [$# -ne 0]
then

echo "Total Input Arguragnts are Submitted: $#"
foriin $*
do

echo $i

This is equivalent to if [$# 1= 0]

done
else

echo "No inputs are submitted...Please submit the CMD inputs..."
fi
OUTPUT

Console Shell

* sh cmdl.sh 45 12 21 5Shiva true 191

Total Inmput Arguments are Submitted: 6
45

12

21

Shiva

true

191

v sh cmdl.sh

No inputs are submitted...Please submit the CMD inputs...

RESULT

Thus the basics of shell programming was executed successfully.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 47|Page

EX.NO: 4 SHELL SCRIPTING — OPERATORS, FUNCTIONS
AIM

To practice the different types of operators using shell programming
OPERATORS

e A special symbol which is used to perform the various tasks such as
arithmetic operations, relational operations, logical operations, file testing
operations, comparisons, etc, ...

ARITHMETIC OPERATORS

S.N OPERATOR DESCRIPTION
1. |+ Addition
2 - Subtraction
3. |* Multiplication
4 / Division

EXPRESSION IN SHELLS

e Shell provides two options for performing expressions in shell scripts.

They are
1. Using expr command - Shell style expr
2. Using double braces () - C Style $(exp)
NOTE

e |t is an important to note that, the operator * does not provide the
multiplication in shell expression using expr command. Because in shell,
the operator * means wild card characters.

e So, the backward slash followed by * symbol * is to provide the
multiplication expression in shell expression using expr command.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 48|Page

I. EXAMPLE OF ARITHMETIC OPERATIONS USING EXPR COMMAND
SOURCE CODE

echo "Enter the number 1: "
read a
echo "Enter the number 2: "

read b

rl="expr $a + $b’
r2="expr $a - $b°
r3="expr $a * $b°
rd="expr $a / $b’

echo "Add: \t$r1"

echo "Sub: \t$r2" 5

o)

The usage of * in expr command does not directly
echo "Mul: \t$r3" support for multiplication. Because it gives different
echo "Div: \t$r4" meanings. So the backward slash with * symbol
provides the multiplication in the expr command.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 49|Page

OUTPUT

Console Shell

Enter the number 1:
15
Enter the number 2:

18
12
45
3

II. EXAMPLE OF ARITHMETIC OPERATIONS USING C STYLE
SOURCE CODE

echo "Enter the number 1: "

The Syntax is $(el, e2,..en).

Each expression el, e2, ..en can be
closed by ()

read a
echo "Enter the number 2: "

read b

r1=$((a+b))
r2=$((a-b))
r3=$((a*h))
r4=$((a/b))

echo "Add: \t$r1"
echo "Sub: \t$r2"
echo "Mul: \t$r3"
echo "Div: \t$r4"

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 50|Page

OUTPUT

Console Shell

Enter the number 1:
12
Enter the number 2:

4

Add:
Sub:
Mul:

Div:

0

RELATIONAL OPERATORS

16
8
48

3
P}

RELATIONAL OPERATORS FOR NUMBERS [using $()]
S.N OPERATOR DESCRIPTION
1. |== Equal
2. I= Not Equal
3. |< Lesser than
4, | <= Lesser than or Equal to
5 |> Greater than
6. |>= Greater than or Equal to

NUMERIC COMPARISON OPERATORS FOR NUMBERS

S.N OPERATOR DESCRIPTION
1. |-eq Equal
2. |-ne Not Equal
3. |-ot Greater than
4. | -ge Greater than or Equal to
5 |-t Lesser than
6. |-le Lesser than or Equal to

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

51|Page

RELATIONAL OPERATORS FOR STRINGS [using if]

S.N OPERATOR DESCRIPTION
1. |= Equal
2 I= Not Equal
3. |\ Lesser than
4 \> Greater than

[ll. EXAMPLE OF RELATIONAL OPERATORS USING C STYLE
SOURCE CODE

echo "Enter the number 1: "
read a
echo "Enter the number 2: "

read b

r1=$((a==b))
r2=$((a'=b))
r3=$((a<h))
r4=$((a<=b))
r5=$((a>h))
16=$((a>=b))

echo "Equal \t\t\t\t\t\t: $r1"

echo "Not Equal \t\t\t\t\t: $r2"

echo "Lesser than \t\t\t\t: $r3"

echo "Lesser than or Equal to \t: $r4"
echo "Greater than \t\t\t\t: $r5"

echo "Greater than or Equal to \t: $r6"

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 52|Page

OUTPUT

Enter the number 1:
30

Enter the number 2:
21

Equal

Not Equal

Lesser than

Lesser than or Equal teo

Greater than
Greater than or Equal to

IV. EXAMPLE OF RELATIONAL OPERATORS FOR STRINGS
SOURCE CODE

echo "Enter the name 1: "
read a
echo "Enter the name 2: "
read b

if [$a = 3$b]
then

echo "Both Strings are Equal”

else
echo "Both Strings are NOT Equal”
fi

if[$a!=$b]

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 53|Page

then

echo "---------- NOT Equal Results

echo "Both Strings are NOT Equal”
else

echo "---------- NOT Equal Results

echo "Both Strings are Equal”
fi
if [$a\> $b]
then

echo "$a is Greater than $b"

else

echo "$b is Greater than $a"
fi
if [$a\< $b]
then

echo "---------- Lesser Results-----

echo "$a is Lesser than $b"

else

echo "$b is Lesser than $a"
fi

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

54|Page

OUTPUT

Console Shell

Enter the name 1:
Sachin
Enter the name 2:

Sachin i1s Lesser than Sachin
= sh rel2.sh

Enter the name 1:
Rohit
Enter the name 2:

Rohit is Leaser than Sachin

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

55|Page

LOGICAL OPERATORS (BOOLEAN OPERATORS)

S.N | OPERATOR
SHELL

OPERATORS IN

DESCRIPTION

1. | Logical AND &&

Binary operator which returns
true if both the operands are
true otherwise returns false
value

2. | Logical OR [

Binary operator which returns
true if one of the operand or
both is true otherwise returns
false value

3. | Not Equal to !

Unary operator returns true if
the operand is false and
returns true if the operand is
true

V. EXAMPLE OF LOGICAL AND OPERATOR

SOURCE CODE

echo "Enter the number 1: "
read a
echo "Enter the number 2: "
read b
echo "Enter the number 3: "
read c
if [$a -gt $b] && [$a -gt $c]
then
echo "$a is bigger than $b and $c"
elif [$b -gt $c]
then
echo "$b is bigger than $a and $b"
else

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

56|Page

echo "$c is bigger than $a and $b
fi

OUTPUT

Console Shell

* sh leg.sh

Enter the number 1:
4
Enter the number 2:
3
Enter the number 3:

£
el

5 1s bigger than 4 and 5

FILE TYPE OPERATORS

S.N | OPERATOR DESCRIPTION

1. | Returns true if exists and if it is a regular file
(.txt, .c. sh, etc,...)

2. |-d Returns true if exists and if it is a directory

3. |-e Returns true if exists

4. |-z Returns true if file is empty (file has zero
length)

5 |-r Returns true if exists and is readable mode

6. |-w Returns true if exists and is writable mode

7. |-X Returns true if exists and is executable mode

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 57|Page

VI. EXAMPLE OF FILE TEST OPERATORS
SOURCE CODE

echo "Enter the file name : "
read fp
if [-e $fp]
then
echo "Object Exists..."
if [-f$fp]
then
echo "It is a regular file..."
echo "Contents:"
echo $(cat $fp)
elif [-d $fp]
then
echo "It is a directory..."
dpath="pwd /$fp
echo $dpath
echo "Contents of Directory: "
for i in $(Is $dpath)
do
echo $i
done
else
echo "It is a special file..."
fi
else
echo "Object does not exists..."
fi

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

58| Page

OUTPUT

Console Shel

* 1s

5 arth2.sh city.txt hh.txt main.sh rel2.sh wel.txt
arthl.sh b filet.sh log.sh rell.sh tt

x sh filet.sh

Enter the file name :
hh.txt

Object Exists...

It is a regular file...
Contents:

Good morning

* sh filet.sh

Enter the file name :
tt
Object Exists...

It is a directory...
/home/runner/sh-Operators/tt
Contents of Directory:
hh.txt

wel.txt

* sh filet.sh

Enter the file name :
ffhadjs

Object does not exista...

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

59|Page

DIRECTORIES

S.N | OPERATOR DESCRIPTION
1. |Is (OR)Is. Shows the list of files and folders in current
directory
2. |ls.. Shows the list of files and folders in parent
directory
3. |lIs/ Shows the list of files and folders in root

working directory

4. |lIs-l Shows the files and folders in long listing
format

5. Is -s Shows the size of files and folders in current
directory

VII. LISTING FILES AND FOLDERS IN ROOT DIRECTORY
SOURCE CODE
(test.sh)

foriin $(Is /)

do [0
Root Path: $Is /

echo $i

done

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 60|Page

OUTPUT

Console Shell

phase2-assembly.tar.bz2
phaseZ-clisp.tar.bz2
phaseZ-cppll.tar.bz2
phaseZ-cpp.tar.bz2
phase2-crystal.tar.bz2
phaseZ-csharp.tar.bz2
phaseZ2-d.tar.bz2
phaseZ2-elixir.tar.bz2
phase2-erlang.tar.bz2
phaseZ-express.tar.bz2
phaseZ-fortran.tar.bz2
phase2-fsharp.tar.bz2
phaseZ—guile.tar.bz2
phaseZ2-haskell.tar.bz2
phase2-loveld.tar.bz2
phase2-mercury.tar.bz2
phaseZ2-pascal.tar.bz2
phase2-php.tar.bz2
phase2-prolog.tar.bz2

phase2-react native.tar.bz2

phaseZ-rlang.tar.bz2
proc
root

run

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 61|Page

VIII. LISTING FILES AND FOLDERS IN PARENT DIRECTORY
SOURCE CODE

foriin $(Is ..)
do

echo $i

Path of Parent Directory: $ Is ..

done

OUTPUT

sh parent.sh

Sh-Operators

_teat runmer.py

IX. LISTING FILES AND FOLDERS IN CURRENT DIRECTORY
SOURCE CODE

foriin $(Is)
do

echo $i Path of Current Directory: $ Is
done

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 62|Page

OUTPUT

> sh current.sh

arth2.sh
b
city.txt

current.sh

filet.sh

hh.txt

leg.sh

main.sh

parent.sh

rell.sh

relZ.sh

test.sh

L

wel . txt

> 1s

5 arth2.sh city.txt filet.sh log.sh parent.sh rel2.sh tt
arthl.sh b current.sh hh.txt main.sh rell.sh test.sh wel.txt

LIST FILES IN LONG FORMAT

e The command Is -| provides the detailed format of showing the files and
folders in current file system.

1. Content Permissions

2. Number of links to the content
Owner of the content

Group onwer of the content

Size of the content (in bytes)

S T

Last modified date / time

7. Name of the file / directory name

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 63|Page

Long Listing of Files and Folders

Console Shell

*» 1a -1
total 52
~IW-r-—I—- 5
arthl.sh
arth2.sh
b
city.txt

-IN-I—I——

~IW-r——r——

-IN-I—I——

~TW-r——Tr——
current.sh
filet.sh
hh.txt

2 log.sh

-IN-I—I——

-IN-I—I——

-IN-I—I——

-IN-I—I——

—IW-r--Ir-- main.sh
parent.sh
rell.sh
rel2.sh

8 test.sh
tt
wel.txt

“IW-I——I——
“IW-I——I——
“IW-I——I——
“IW-I——I——

drwxr-xr-x

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

“IW-I——I——

1

CONTENT PERMISSION

¢ |n content permission, the column 1 indicates the file type. They are

. - means for regular file

= d means for directory

" b means for special block file

= C means for special character file

¢ In content permission, the next column indicates the file permissions
such as read, write and execute

e Read - represents the read mode which is code value 4
e Write - represents the write mode which is code value 2

o Execute - represents the execute mode which is code value 1.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 64|Page

SHELL FUNCTION

e Shell program supports the function which is used to implement the
variables as well as execute the linux commands.

Syntax1

function <name>

{

user code

}

Example

function show

{

user code

Syntax?2

<function-name>()

{

user code

}

Example

show()

{

user code

CALLING FUNCTION

e Shell function can be called using its name only.
e The operation () should not be used while calling the function.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 65| Page

Syntax

$ function-name

Example

$ show

I. EXAMPLE OF SHELL FUNCTION
SOURCE CODE

The operator symbol () is not allowed while

echo "Good Morning ..." _ :
g calling the shell function.

disp

OUTPUT

Console Shell

¢ sh funl.sh

Good Morning ...

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 66|Page

SHELL FUNCTION WITH ARGUMENTS

e Shell function supports the arguments

e The arguments are given after the function name while calling the
function

e Each argument is separated by space

e The positional parameters like $1, $2, etc... will receive the values of
function arguments inside the function definition

Il. EXAMPLE OF SHELL FUNCTION WITH ARGUMENTS
SOURCE CODE

disp()
{
a=$1
b=%$2
rs="expr $a + $b°
echo "Sum is: $rs"

disp 12 21

OUTPUT

Console Shell

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 67|Page

SHELL FUNCTION WITH RETURN STATEMENTS

e Like c language, shell function returns the values
e The return keyword is used to return the values in the shell function

e The returned result of calling function can be obtained using the special
symbol $? (by default, the return values of the function will be stored to
the built-in variable $?)

NOTE

e Itis animportant to note that, the shell function will return a single value.

[ll. EXAMPLE OF SHELL FUNCTION WITH RETURN VALUE
SOURCE CODE

echo "----m-mmm e
echo "\t\tShell Function with Return Value"

rs="expr $a + $b°

return $rs

disp

k=%$?
echo "Sum is: $k"

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 68|Page

OUTPUT

Console Shell

sh fun3.sh

COMMAND SUBSTITUTION

e |In shell, assigning the built-in command to a user defined variable is
called as command substitution

e This is done using the special symbol ‘command-name” or $(command-
name)

Syntax1

Variable-Name="command-name”

Example

files="Is’ # the output of Is command is stored to the

variable called files.

dirpath="test”
files="Is $dirpath * # the contents of test directory are stored

to the variable called files

Syntax 2

Variable-Name=%$(command-name)

Example

files=$(Is) # the output of Is command is stored to the

variable called files.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 69|Page

I. EXAMPLE OF COMMAND SUBSTITUTION
SOURCE CODE

rs="date"

echo "Current Date: \n"$rs

OUTPUT

Console Shell

* sh cmdsubl.sh

Current Date:

Fri Apr 30 02:40:07 UIC 2021

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 70|Page

IIl. COMMAND SUBSTITUTION-FILE COPYING BETWEEN DIRECTORIES
SOURCE CODE

" Command Substitution using the
symbol " -

path="/home/runner/OS-Lab/d

Path of Source Directory (d1). Parent
Path can be get using pwd command.

src="Is $path’

-/

tar="/home/runner/OS-Lab/d5"

iorop. \ Path of Target Directory (d5).

do ”
cp $i $tar
echo "$i is successfully copied to $tar/$i"
done

OUTPUT

Console Shell

> mkdir d5
= 13 do
= sh test.sh

fact.sh is successfully copied to /home/runner/05-Lab/d5/fact.sh
hh.txt is successfully copied to /home/runner/05-Lab/d5/bh.txt

fact.sh
r 1s dl
fact.sh

RESULT

Thus the operators and shell functions of the shell programming have
been executed successfully.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 71|Page

EX.NO: 5 SHELL ARRAYS
AIM

To practice the arrays in shell programming.
SHELL ARRAY

e Array is a set of elements which are having same type or different type
e Itis an example of linear data structures (sequential data structure)

e |tis accessed by the index number which starts from O to n-1

e |t supports the storage, retrieval, insertion, deletion and updation

e In shell, the array can be created with help of the special operator
symbol () instead of square operator []

¢ Unlike other compiled languages c/c++/c#/java, the shell follows the
dynamic data typed system. So no need to mention the data type in the
creation of an array.

Syntax

User-defined-name = (Element 1 Element 2 ...Element n)

Where,

Element 1, Element 2, ...Element n can be Same Type or Different
Type.

Example
arr=(12 34 59) /I homogenous collection
arr=(“Sachin” 12.41 55 true) /I heterogeneous
Length

e Array length can be done by using the special symbol # followed by @
or * symbol along with array name

e |tis very important to note that, the curly braces operators {} are used
for accessing the array in shell

Syntax

{#<array-name>[@1]}

(OR)

{#<array-name>[*]}

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 72|Page

Example

Is=(12 34 55 99)

len=${#Is[@]}
(OR)

len=${#Is[*]}

Accessing Individual array contents

e The contents of the array can have accessed by using its index location

Example
Is[O] 2> 12
Is[1] > 32

Printing Individual Element

e The individual element of an array can be displayed using the curly
braces {} along with array name

Syntax

${arrayname[index-number]}

Example
echo ${Is[1]} /Il display the second element
echo ${Is[3]} /I display the fourth element

Accessing Entire array contents

e The entire array elements can be called using the star symbol * or @
with array name.

e |tis an important to note that, if the index number is * or @, the whole
elements of the array are referenced.

Example
${Is[*]} -> contains the entire array elements
echo ${Is[*]} - show the array contents at the same time.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 73|Page

OR

H{Is[@]} -> contains the entire array elements

echo ${Is[@]} - show the array contents at the same time.

Commands to check the Shell Types

$ cat /etc/shells

Console Shell

» cat fetc/shells

$ /etc/shells: walid login shells
/bin/sh

/bin/bash

/bin/rbash

/bin/dash

|. EXAMPLE OF ARRAY CREATION FOR HOMOGENOUS TYPE
(/home/runner/Latest-Shells-21/arrl.sh)
SOURCE CODE

Ib=(12 45 77 99 88)

echo "Array Contents using n

echo ${Ib[*]} 9
Same type elements of array.

[0

Display the array contents at the same time
using the name.
IT7411 — OS LABORATORY (4/8 B.TECH —IT) 74Page

for i in ${Ib[*]}

do
echo $i
done Display the array contents one by one
using for loop.
OUTPUT

Array Contents using name
12 45 77 399 88
Length of the Array: 5

Array Contents using for loop

Il. EXAMPLE OF ARRAY CREATION FOR HETEROGENEOUS TYPE
(/home/runner/Latest-Shells-21/arr2.sh)
SOURCE CODE
€ChO0 "-m-mmmm e "

echo "Shell Array for Different Type of Elements"

D

array.

lb=("Shiva" 21 72.93 True) q Different type elements of

echo "Array Contents using name"

echo ${Ib[*]} Display the array contents at the

same time using the name.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 75| Page

echo "Length of the Array: ${#Ib[@]}"

echo "Array Contents using for loop"

for i in ${Ib[]}

do

echo $i Display the array contents one by one
done using for loop.
OUTPUT

Array Contents using name
Shiva 21 72.93 True
Length of the Array: 4

Array Contents using for loop

Shiva
21
72.93
True

lll. INDEX BASED ARRAY CREATION FOR HETEROGENEOUS TYPE
(/home/runner/Latest-Shells-21/arr3.sh)
SOURCE CODE

Is[0]=12

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 76|Page

\ Storing elements to array using
Is[1]=21 index number.

Is[2]="M"
Is[3]=True
Is[4]="Rohit"

echo "Array Contents using name"
echo ${Is[*]}

echo "Length of the Array: ${#Is[@]}"

echo "Array Contents using for loop

ECNO "-mmmmmmmm e N

foriin ${Is[*]}
do

echo $i

Printing the array length.

done

OUTPUT

Console Shell

Array Contents using name

12 21 M True Rohit
Length of the Array: 5

Array Contents using for leop

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 77|Page

IV. DISPLAYING LINUX COMMANDS USING ARRAY

(/home/runner/Latest-Shells-21/arr4.sh)

SOURCE CODE

Ib=()

Ib[0]=$(Is)
Ib[1]=$(date)
Ib[2]="cal’
Ib[3]="cat /etc/shells’

1=
1=
]
]

echo "Length of the Array: ${#Ib[@]}"
echo "Array Contents using for loop"

for i in ${Ib[*]}
do
echo $i

done

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

78| Page

DISPLAYING THE OUTPUT OF LINUX COMMANDS

Length of the Array: 4
Array Contents using for loop

arrl.sh
arr2.sh
arr3.sh
arrd4.sh
forkinshelll.sh
hell
hello
hellc.c
hello.txt
main.sh
msg.txt
sc
scl.c
15

Tue

May

18
04:07:59
orc

2021
May

2021

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 79|Page

DISPLAYING THE OUTPUT OF LINUX COMMANDS - (CONTINUE)

fetc/shells:
valid

login
shells

/bin/sh
/bin/bash
/bin/rbash
/bin/dash

RESULT
Thus the arrays using shell programming have been executed
successfully.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 80|Page

EX.NO: 6

AlM

PROCESS SYSTEM CALLS - FORK, EXIT, WAIT

To practice the system calls such as fork, wait, exit using linux c

programming.

SYSTEM CALLS

e |tis an interface between process and kernel

e Itis way for programs to interact with OS

e Five different types of system calls are available. They are

1.

2
3
4.
5

Process Control

. File Management

. Device Management

Information Management

. Communication

Process
Contorl

Commnication

Information
maintanance

N

File

managment

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

81|Page

1. Process Control
e This system calls perform the task of process creation, process

termination, etc.
Functions
= End and Abort
= Load and Execute
» Create Process and Terminate Process
= Wait and Signed Event
= Allocate and free memory

2. File Management

e It handles file manipulation jobs like creating a file, reading, and writing,
etc.

Functions

= Create afile

= Delete file

= QOpen and close file

» Read, write, and reposition
» Get and set file attributes

3. Device Management

e It performs the job of device manipulation like reading from device
buffers, writing into device buffers, etc.

Functions

» Request and release device
» Logically attach/ detach devices

= Get and Set device attributes

4. Information Management

e It handles information and its transfer between the OS and the user
program.

Functions

= Get or set time and date

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 82|Page

Get process and device attributes

5. Communication

e These types of system calls are specially used for interprocess
communications.

Functions

e Create, delete communications connections

e Send, receive message

e Help OS to transfer status information

e Attach or detach remote devices

PROCESS CONTROL SYSTEM CALLS

e |t deals with process creation, process termination, etc, ...

Examples
S.N | Linux | Windows Description
1. | fork() CreateProcess() Create a child process
2. | exit() ExitProcess() Terminate the process
3. |wait() | WaitForSignalObject() Wait for the child process
termination
fork()

e |t is an important system calls which is used to create a new process in
the OS

e The newly created process is called as child process and caller of the

child process is called as parent process

e |t takes no arguments and returns the process ID

e |tis called once but returns twice (once in parent and once in the child)

e The new process gets a copy of the current program, but new process id
(pid). The process id of the parent process (the process that called fork())
is registered as the new processes parent pid (ppid) to build a process

tree.

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

83|Page

e |tis an important to note that, Unix / Linux will make an exact copy of the
parent's address space and give it to the child. Therefore, the parent and
child processes have separate address spaces.

e It returns the following values:

= Negative —-> new process creation was unsuccessful
= Zero - returned to child process
= Positive - returned to parent (caller) process

Child Process

e The newly created process is called as child process
e |tis identified by the return code is O

Parent Process

e The caller of the newly created process is called as parent process

e |tis identified by the return code is positive value

Formula
Total number of processes (T) : 2"
Total number of Child processes (C) : 2"-1
Total number of Child processes (P) : T-C
NOTE

o After the fork(), both parent and child processes are running
simultaneously

e The newly created process is called as child process which is identified
by the return code is O and the caller of the child process is called as
parent process which is identified by positive value (>0)

e Program statements before fork() is common for both child and parent
processes but after fork() call, the rest of the program instructions will be
allocated separately for child and parent process

e Child and parent processes don’t share common address space. They
are having own memory address space. So if there are any changes in
child process won't reflect the parent process. Similarly, if there are any
changes in parent processes won'’t reflect the child process.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 84|Page

WHICH PROCESS RUNS FIRST (b/w parent and child process)

e |t an important to note that, there is no rule about which process runs first
between parent and child processes.

e As soon as a process is ready for execution (i.e. the fork system call
returns), it may run according to the scheduling configuration (priority,
scheduler chosen, etc.).

e Depending on how the process is added to the scheduler, either process
may be scheduled first after returning from fork.

REQUIRED HEADER FILES
1. #include<stdio.h>

e This header file is used for printf(), scanf(), etc, ...
2. #include<unistd.h>

e This header file is used for fork(), getpid(), getppid(), etc, ...
3. #include<sys/types.h>

e This header file is used for pid_t, etc, ...
4. #include<sys/wait.h>

e This header file is used for wait(), etc, ...
5. #include<stdlib.h>

e This header file is used for exit(), etc, ...

TOOLS SUPPORT

Compiler : gcc compiler (gcc <filename>.c)
Execution : Ja.out (assembly output)
0N : Linux OS platform

Terminal : Online linux terminal (www.replit.com)

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 85|Page

I. EXAMPLE OF SINGLE FORK

(forkl.c)
SOURCE CODE o
#include<unistd.h> © Total Number of Processes are > 2"
#include<stdio.h> > 21
int main() N
{ g ’
PrANKF("-mmmmmmeemmmmme oo cf e e ");
PrNF("--mmmmm e ");

Hello World\n");
return O;

OUTPUT

Hello World
Hello World

|

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 86|Page

Pictorial Representation

PARENT

4)
g PARENT V(cmp)

(Same program (Same program

statements) statements)

. /N J/

e When the child process is created, both the parent process and the child
process will point to the next instruction (same Program Counter) after
the fork().

e In this way the remaining instructions or C statements will be executed
the total number of process times, that is 2" times, where n is the number
of fork() system calls

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 87|Page

Il. CALLING DOUBLE FORK

p
SOURCE CODE "D Total Number of Processes are -> 2"

#include<unistd.h> > 92

#include<stdio.h>
>4

int main()

printf("Good Morning
return O;

OUTPUT

Console shell

Good Morning
Good Morning

Good Morning

Good Morning

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 88|Page

SOURCE CODE

#include<unistd.h>
#include<stdio.h>

int main()

fork();
fork();
fork();

printf("Welcome to Chennai\n");
return O;

[ll. CALLING TRIPLE FORK

) o
(D Total Number of Processes are -> 2"
> 23
-8

bal y,

OUTPUT

Welcome to Chennai

Welcome to Chennail

* Welcome to Chennai

Welcome
Welcome
Welcome
Welcome

Welcome

to
te
to
to
to

Chennai
Chennai
Chennai
Chennai

Chennai

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 89|Page

IV. PRINT THE RETURNED VALUE OF CHILD AND PARENT PROCESSES

USING FORK

SOURCE CODE

#include<unistd.h>

#include<stdio.h>

#include<sys/types.h> R

int main() This header supports the pid_t

{
pid_tid;

PrNtf("----------mmm oo ");
printf("\tReturn Code of Parent & Child\n");
PrNtf("----------mmm oo ");

/I calling fork() : — — a
_ Child Process: It is identified by O
id=fork(); /[
if(id==0)

{

printf("Child Process is calling ...\n");
printf("Returned Value of Child Process : %d\n",id);
} 9]
i

Parent Process: It is identified by >0
else <«

{

printf("Parent Process is calling ...\n");

printf("Returned Value of Parent Process : %d\n",id);

}

return O;

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 90|Page

OUTPUT

Console Shell

* gcc rc fork.c

Parent Process is calling ...

Returned Value of Parent Process : 1111
* Child Process is calling ...
Returned Value of Child Process : 0

Usage of getpid() and getppid()
e Two major functions which are used to get the process ids. They are
1. getpid()
2. getppid()
1. getpid()

e Itis a built-in function and available in #include<unistd.h> header file
e Itisusedto returnthe process ID of child process (newly created process)

e Return value: pid_t

2. getppid()

e Itis a built-in function and available in #include<unistd.h> header file

e |tis used to return the process ID of parent process (caller of the newly
created process)

e Return value: pid_t
pid_t

e |t stands for process id type and built-in variable to store the process ids
of parent and child function

e |tis the type of the process ID which returns an unsigned integer value.

e Itis available in #include<sys/types.h>

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 91|Page

V. DISPLAY THE PROCESS ID (PID) OF PARENT AND CHILD
PROCESSES USING GETPID() AND GETPPID()

SOURCE CODE

#include<unistd.h>
#include<stdio.h>
#include <sys/types.h>
int main()

{
int id;

printf("\tProcess ID of Parent & Child\n");

/I calling fork()
id=fork();
if(id==0)
{
printf("Child Process is calling ...\n");
printf("Process ID (PID) of Child Process : %d\n",getpid());

}
else
{
printf("Parent Process is calling ...\n");
printf("Process ID (PID) of Parent Process : %d\n",getppid());
}
return O;

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 92|Page

OUTPUT

Console Shell

» gce pidl ferk.c

Parent Process is calling ...
Process ID (PID) of Parent Process : 13
Child Process is calling ...
Process ID (PID) of Child Process : 1037

e Itis system call and available in #include<sys/wait.h> file

e |t blocks the current process (calling process), until one of its child
processes terminate or a signal is received

e |t takes one argument which is the address of an integer variable (stores
the information of the process) and returns the process ID (PID) of
completed child process

e Return type: pid_t

e If only one child process is terminated (finished its execution), then it
returns the process ID of the terminated child process

e |f more than one child processes are terminated, then it returns process
ID of any terminated arbitrary child process.

The execution of wait() could have two possible situations.

1. If there are at least one child processes running when the call to wait() is
made, the caller will be blocked until one of its child processes exits. At
that moment, the caller resumes its execution.

2. If there is no child process running when the call to wait() is made, then
this wait() has no effect at all. It returns -1 immediately.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 93|Page

NOTABLE POINTS

exit()

wait(NULL) will block the parent process until any of its children has
finished their execution (parent process will be blocked until child process
returns an exit status to the operating system which is then returned to
parent process)

If child finishes before parent reaches wait(NULL) then it will read the exit
status, release the process entry in the process table and continue
execution until it finishes as well.

Wait can be used to make the parent process wait for the child to
terminate (finish) but not the other way around

Wait(NULL) simply making the parent wait for the child.

On success, wait() returns the process ID of terminated child process
while on failure it returns -1

Once child process finishes, parent resumes and prints the rest of the
statements of parent process

It is system call and available in #include<stdlib> file
It takes only one parameter which is exit status as a parameter

It is used to close all files, sockets, frees all memory and then terminates
the process.

The parameter O indicates that the termination is normal.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 94|Page

VI. EXAMPLE OF WAIT AND EXIT SYSTEM CALLS

SOURCE CODE

#include<stdio.h>
#include<sys/types.h>
#include<unistd.h>
#include<stdlib.h>
#include<sys/wait.h>
int main()

{
pid_t pd;

printf("\twait() and exit()\n");

PrNF(*-----mmmmm e m e

Il execution of fork() call
if (fork()== 0)
{
printf("Child is calling...\n");
/I normal termination
exit(0);
}

else

{

/I get the PID of terminated child process

pd = wait(NULL);
printf("Parent is calling...

printf("Parent PID\t: %d\n", getppid());
printf("Child PID\t: %d\n", pd);

}

return O;

}

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

95|Page

OUTPUT

Console Shell

Child is calling...
Parent is calling...
Parent PID : 15
Child PID : B2

» gcc waitl.c

Child is calling...

Parent is calling...
Parent PID : 15
child PID : 89

VII. SUM OF NUMBERS IN ARRAY USING CHILD AND PARENT
PROCESS

Task

Write a linux ¢ program to find the sum of the numbers in array in child process
and execute the parent process after the execution of child process using
system calls.

Used System calls:

fork(), wait()
SOURCE CODE
#include<stdio.h>
#include<sys/types.h>
#include<unistd.h>
#include<stdlib.h>
#include<sys/wait.h>
int main()

{
int i,a[]={1,5,7,8,9};

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 96|Page

int s=0;

printf("\tSum of Numbers in Child and Execution of Parent after the
child\n");

/I create new process by fork and return the value in p
int p=fork();
/I if the returned value is negative value (unsuccessful status)
if(p<0)
{
printf("Failed to create a new Process ...\n");
exit(0);
}
/l'if the returned value is equal to 0 (checking child process)
else if(p==0)
{
printf("Child Process is calling...\n");
for(i=0;i<5;i++)

{

Wait() System call: wait parent until

s=s+alil; child has to terminate.

}
printf("The result is: %d\n",s);

printf("Child Process is completed...\n");

/'if the returned value is gositive (checking parent process)

wait(NULL);
printf("Parent Process is calling after the Child Process ...\n");

}

return O;

}

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 97|Page

OUTPUT

Child Process is calling...

The result is: 30

Child Process 1s completed...

Parent Process 13 calling after the Child Process ...

» gcc sumfork.c

Child Process 13 calling...

The result 1s: 30

Child Process is completed...

Parent Process is calling after the Child Procesas ...

Child Process is calling...
The result 1s: 30

Child Process is completed...

Parent Process 1s calling after the Child Process ...

RESULT

Thus the types of process system calls have been executed
successfully.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 98|Page

EXNO: 7 INTERPROCESS COMMUNICATION USING PIPE
AIM

To work with interprocess communication using pipe in linux c
programming.
IPC

e |PC stands for Inter Process Communication

e It is one of the mechanism provided by the OS which allows processes
to communicate with each other and synchronize their action

e Examples: Message Queue, Signals, Shared Memory, Pipes, etc,...

Process (P1) |g===p| Process (P2) Process
(Pn)

IPC

EXAMPLES TECHNIQUES OF IPC
e Shared Files

e Shared Memory
e Pipes (Named and Unnamed Pipes)
e Message Queues
e Sockets
e Signals
PIPES

¢ Pipe provides the communication between processes on same computer
or different computer or across the network

e Itis classified as two types. They are
1. Unnamed Pipe (PIPE)

2. Named Pipe (FIFO)

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 99|Page

Pipe Symbol

e The output of one command (read) can be given as the input of next
command (write) that is called as pipe command. In linux terminal, it is
indicated the symbol |

e Two processes can bejoined or communicated with help of the pipe
symbol on the shell terminal

pd[0] pd(0]

Process 1 (P1) » Process 2
< (P2)

pd[1] pd[1]

e Both processes P1, P2 are executed simultaneously and P1 will pass
data / message to Process P2 as it executes.

Example of Pipe Symbol in Linux Terminal

1s Q x

a.out arr2.sh arrd.sh hell helleo.c main.sh sc tp
arrl.sh arr3.sh forkinshelll.sh hello hello.txt msg.txt scl.c wel.txt

ls | wec -1
16

e Here the output of Is command is given as an input to the wc - command
using pipe symbol (]).

e Hence, both Is command (Process P1) and wc —| command (Process P2)
can be communicated through pipe symbol ().

e Using pipe symbol, ‘n’ of processes or commands can be communicated.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 100|Page

l. IPC USING PIPE
PIPE SYSTEM CALL

In linux c, the pipe system call is created by using the built-in function
called pipe()

Example

int pipe(int pd[2]);

Here, pipe system call accepts only one argument, which is an integer
array of two pipe descriptors.

pd[0] is used for reading data / message from the pipe and pd[1] is used
for writing data / message to the pipe.

Pipe (Unnamed Pipe or Anonymous Pipe)

In linux, if the pipe has no name then it is called as unnamed pipe or
anonymous pipe (gives communication between parent and child
processes)

It is a communication medium between two or more related or interrelated
processes

It is mainly used for interprocess communication. It has two ends. They
are:

1. First end is fd[0] which is used for reading mode
2. Second end is fd[1] which is used for writing mode

It is used for transferring data between two processes / commands /
programs

It acts like queue data structure. We can write 512 bytes at the same time
but we can read ONLY ONE BYTE at the same time.

It is an important to note that, pipe is an uni-directional (half duplex or
one-way communication) that is either from left to right or right to left

It is an important to note that, whatever is written on one end (Ex. write
end) might visible on other end (Ex. read end)

Return Value of Pipe

It returns O if successful otherwise it returns -1
Return type:int

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 101|Page

Required Header File

#include<unistd.h>

OPERATIONS OF PIPE

e One Way Communication between processes
*= One pipe system call is required

e Two Way Communication between processes
= Two pipe system calls are required

= By default, it is a half-duplex method. So the first process will
communicate with second process or second process will
communicate with first process. However, in order to achieve a
full-duplex, another pipe is needed.

BUILT-IN METHODS OF PIPE
1. write(pipe-descriptor[1], void * message, size t count)

e This method is used to write the string message using the pipe end [1]
e |t takes three arguments such as descriptor, message and size

e 1Stargument is pipe descriptor

e 2"9argument is message which is string type

e 39 argument is count which is unsigned int type.

e This method will return the number of bytes written on success case and
will return -1 if the case is failure.

e Return type: ssize t

2. read(pipe-descriptor[0], void * buffer, size_t count)

e This method is used to read the string message using the pipe end [0]
e |t takes three arguments such as descriptor, message and size
e 1Stargument is pipe descriptor

e 2" argument is message which is string type

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 102|Page

e 3 argument is count which is unsigned int type.

e This method will return the number of bytes read on success case and
will return -1 if the case is failure.

e Return type: ssize t

3. close(pipe-descriptor)

e This method is used to close the pipe if pipe is already opened
e |t takes only one argument which is the integer value of pipe descriptor
e It will return O on success case and -1 on failure case.

e Return type:int

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 103|Page

I. SENDING AND RECEIVING STATIC MESSAGES BETWEEN TWO
PROCESSES USING PIPE

(/home/runner/Latest-Shells-21/pipeex1.c)
SOURCE CODE

#include<string.h>
#include<fcntl.h>
#include <unistd.h>
#include<stdio.h>
#include<stdlib.h>
int main()
{

intr;
Il pipe descriptors

int p[2];

PHANE("==m=mmmmmmm e e e e e);
printf("\tSending and Receiving Static Messages-Pipe\n");
8L);

I/l Text Messages (fixed messages)
char *sms1="Good Morning\n";
char *sms2="Hello World\n";
unsigned int s=strlen(smsl);
char buf[1024];

/I create unnamed pipe using pipe system call
r=pipe(p);
if(r<0)

{
printf("Failed to created unnamed pipe...\n");
exit(1);

}

/I send messages to another process
write(p[1],sms1,strlen(smsl));
write(p[1],sms2,strlen(sms1l));
printf("Two Messages are sent successfully...(Process 1)\n");

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 104 |Page

printf("Message from Unnamed Pipe: (Process 2)\n");
/I read messages from the pipe (other end) using single buffer
read(p[0],buf,sizeof(buf));
printf("%s",buf);
return 99;

OUTPUT

Console Shell

Message from Unnamed Pipe:

Good Morning
Hello World

1

lI. FINDING PRIME NUMBER USING PIPE
(Static Input)
(/home/runner/Latest-Shells-21/pipeex3.c)
SOURCE CODE

#include<fcntl.h>
#include <unistd.h>
#include<stdio.h>
#include<stdlib.h>
/l function returns string as a result
char * findprime(int n)
{

int c=0;

for(int i=0;i<n;i++)

{

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 105|Page

if(N%(i+1)==0)
C++:

}
if(c==2)

return "The Given Number is a prime...\n";
else

return "The Given Number is NOT a prime...\n";
}
// main function
int main()
{
int r,ele;
/I pipe descriptors

int p[2];

PHANEF(" === m o m e m e oo ");
printf("\tFinding Prime Number-Pipe\n");

PHANE("==m=nmmmmmmm e e e e e);

char buf[1024];
/I create unnamed pipe using pipe system call
r=pipe(p);
if(r<0)
{
printf("Failed to created unnamed pipe...\n");
exit(1);
}
char *msg="18";
/l send single message (string type) to another process (one end)
write(p[1],msg,sizeof(msg));
printf("One Message is sent successfully...(Process 1)\n");
PrANEF(* - m o m e m e oo ");
printf("Message from Unnamed Pipe: (Process 2)\n");
Il read message from pipe (other end)
read(p[0],buf,sizeof(msg));

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 106|Page

printf("Received Data: %s\n",buf);
/I convert received string data to integer
int num=atoi(buf);
/I pass integer number to function for the prime number detection
char *rs=findprime(num);
/I print the result
printf("%s\n",rs);
return 99;

IF INPUT IS 18

Message from Unnamed Pipe: (Process 2)
Received Data: 18
The Given Number is NOT a prime...

i

IF INPUT IS 31

Message from Unnamed Pipe: (Process 2)

Received Data: 31
The Given Number is a prime...

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 107|Page

[ll. FINDING PRIME NUMBER USING PIPE

(Dynamic Input)

(/home/runner/Latest-Shells-21/pipeex4.c)

SOURCE CODE

#include<fcntl.h>
#include <unistd.h>
#include<stdio.h>
#include<stdlib.h>
char * findprime(int n)

{

}

int c=0;
for(int i=0;i<n;i++)
{
if(n%(i+1)==0)
{

C++;

}
if(c==2)

return "The Given Number is a prime...\n";
else

return "The Given Number is NOT a prime...\n";

int main()

{

intr;

/[array of pipe descriptors for reading and writing

int p[2];

PrANEH(* - mm o m e);
printf("\tFinding Prime Number-Pipe\n");

PrANEH(* - mm o m e);

char buf[1024];

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

108 | Page

/I create unnamed pipe using pipe system call
r=pipe(p);
if(r<0)
{
printf("Failed to created unnamed pipe...\n");
exit(1);
}
int ele;
printf("Enter a number: ");
/I read a dynamic input which is an integer type
scanf("%d",&ele);
/] create a string and allocate a dynamic memory for this type
char *msg=(char *)malloc(sizeof(char *));
/I convert integer number to string using sprintf(char*, type, base) method
sprintf(msg,"%d",ele);
/I send single message to another process (one end)
write(p[1],msg,sizeof(msQ));
printf("One Message is sent successfully...(Process 1)\n");

printf("Message from Unnamed Pipe: (Process 2)\n");
/I read message from sender using read() method (other end)
read(p[0],buf,sizeof(msg));
printf("Received Data: %s\n",buf);
/[convert received string data to integer
int num=atoi(buf);
/I pass integer number to function for the prime number detection
char *rs=findprime(num);
/Il display the results
printf("%s\n",rs);
return 99;

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 109|Page

OUTPUT

(@)
o
-
w
o
[31]
w
T

* gcc pipeexé.c

Finding Prime Number-Pipe

Enter a number:
One Message is sent successfully... (

Message from Unnamed Pipe: (Process 2)
Received Data: 13
The Given Number/is a prime...

* gcc pipeexé4.c

Enter a number:

One Message is sent successfully...

Message from Unnamed Pipe: (P
Received Data: 15

Enter a number:{Z:)

One Message is sent successfully...(Process 1

Message from Unnamed Pipe:
Received Data: 50

The Given Number is

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

110|Page

IV. SENDING AND RECEIVING DYNAMIC MESSAGES BETWEEN TWO
PROCESSES USING PIPE

(/home/runner/Latest-Shells-21/test2.c)
SOURCE CODE

#include<string.h>

#include<fcntl.h>

#include <unistd.h>

#include<stdio.h>

#include<stdlib.h>

int main()

{
int r,nl;
static int c=0;

/[l dynamic memory for sender
char *msg=(char *)malloc(sizeof(char *));

Il fixed memory for receiver memory (max.memory)
char bf[1024];

Il pipe descriptors for reading and writing data
int p[2];

/I create unnamed pipe using pipe system call

r=pipe(p);

if(r<0)

{
printf("Failed to created unnamed pipe...\n");
exit(1);

}

printf("Enter the number of messages to send: ");

scanf("%d",&nl);

printf("Enter the messages:\n");

for(int i=0;i<nl;i++)

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 111|Page

printf("Message #%d: \n",(i+1));
scanf("%s",msQ);
/[write message to process 2
write(p[1],msg,50);
/I count the length of the message
s+=strlen(msg);
printf("\tOne SMS is sent\n");
printf("\tfSMS Length: %d\n",(int)strlen(msg));
/I increment the SMS count by the variable ¢ with 1
C++;

}

printf("%d Messages are Sent Successfully\n",c);
printf("Message from Unnamed Pipe:\n");
printf("Process 2:\n");

for(int i=0;i<nl;i++)
{
read(p[0],bf,50);
printf("%s\n",bf);
}

return 99;

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

112|Page

Enter the number of messages to send: 5
Enter the messages:
Message #1:
HelloWorld

One SMS is

SMS Length:
Message §2:
GoodMorning

One SMS is

SMS Length:
Message #3:
Welcome

One SMS is

SMS Length:
Message §4:
Super

One SMS is

SMS Length:

Message #5:

Nice

One SMS is sent

SMS Length: 4
5 Messages are Sent Successfully
Message from Unnamed Pipe:
Process 2:

HelloWorld
GoodMorning
Welcome
Super

Nice

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

113|Page

V. PARENT AND CHILD PROCESS COMMUNICATION (IPC) USING PIPE
(/home/runner/Latest-Shells-21/ipcpipe.c)

Number of used Pipes : 1

Number of child processes : 1

Number of parent processes 1

Major system calls used : pipe(), fork()
Types of Pipes : Unnamed Pipe()
Type of Communication : One way

SOURCE CODE

#include<fcntl.h>
#include <unistd.h>
#include<stdio.h>
#include<stdlib.h>
#include<sys/wait.h>
int main()
{
intr;
/I pipe descriptors for read and write
int p[2];
PrNtF(" === "
printf("\tIPC-Parent and Child using Pipe (One Way)\n");
PrNtf("------- == "
/I variables declarations
char *sms=(char *)malloc(sizeof(char *));
char buf[1024];
/I create unnamed pipe using pipe system call
r=pipe(p);
if(r<0)
{
printf("Failed to created unnamed pipe...\n");
exit(1);
}
/[call fork() to create parent and child processes
int f=fork();
if(f<0)
{
printf("Error in creating the processes...\n");
exit(0);
}

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 114|Page

/I child process

else if(f==0)

{
printf("Child Process (P1)\n");
printf("Enter the message to send (50 characters maximum): ");
fgets(sms,50,stdin);

I/l send message fro
write(p[1],sms,50);

ild to parent using pipe

}
/] parent process
else It is indicated by keyboard input.
{
wait(NULL);
PINEE(" == m e e);

printf("Parent Process (P2)\n");

/] receive message from child via pipe
read(p[0],buf,50);
printf("Received Message:\n");
printf("%s\n",buf);

}

return 99;

}

OUTPUT

* gcc ipcpipe.c

Child Process (P1)

Enter the message to send (50 characters maximum):

Parent Process (P2)

Received Message:

Hello Hi How are you?

RESULT

Thus the interprocess communication using pipe has been executed
successfully.

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 115|Page

EX.NO: 8

AIM

INTERPROCESS COMMUNICATION USING NAMED
PIPE

To work with interprocess communication using hamed pipe in linux ¢
programming.
IPC USING NAMED PIPE (FIFO)

FIFO stands for First in First Out

A special kind of the file on the local storage that allows two or more
number of processes to communicate with each other

Named IPC object which provides communication between two unrelated

processes

Unlike pipe, it has name (identified by the unique name)

Unlike pipe, it is a full duplex method which means that first process can
communicate with second process and second process can
communicate with first process.

DIFFERENCE BETWEEN PIPE AND FIFO

S.N | FEATURES PIPE (Unnamed Pipe) FIFO (Named Pipe)
1. | Description It has no name It has a name (Named
(Unnamed IPC object) IPC object)
2. | Creation It is created by the It is created by the
system call pipe() method mkfifo() or
open()
3. | Existence It does not exist in the It exists in the file
file systems system
4. | Nature By default, it is an It is bidirectional, same
unidirectional FIFO can be used for
reading and writing at
the same time
5. | Read & Write Here reader and writer Here, it does not require
operations are done at that both read and write
the same time operations to happen at
the same time.

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

116|Page

6. | Processes Here data transfer takes | It has multiple

place between parent processes

and child process. communicating through
it, like multiple client
server application

7. | Communication | Here communication is In FIFO, it is not
among the process necessary for the
having related process process having the
related process
(unrelated process)

8. | Support Pipe is local to the It is capable of
system and can'’t be communicating across
used for the different computers and

communication across network.
the network

NOTE

e Neither pipes nor FIFO allow file positioning. Both reading and writing
operations happen sequentially that is reading from the beginning of the
file and writing at the end of the file.

Required Header File

#include<sys/stat.h> /I used for creating FIFO i.e. mkfifo()

CAPACITY OF FIFO
e |t has multiple readers or multiple writers

e Bytes from each writer are written automatically up to a maximum size of
PIPE_BUF (4KB on Linux OS)

FIFO

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 117|Page

BUILT-IN METHODS OF NAMED PIPE (FIFO)
1. mkfifo(const char *pathname, mode_t mode)
e Itis used to create a FIFO file
e |t takes two arguments. They are

» First argument is pathname of the newly created FIFO file which is
string type (identified by char *)

= Second argument is mode of the FIFO’s permissions.
e Return type:int
2. open(fpath, mode, permission)
e |tis used to create a named pipe (FIFO)

e |ttakes two arguments. First argument is file name and second argument
Is mode. The mode can be

= O _CREAT (create mode)

= O_WRONLY (write mode only)

= O_RDONLY (read mode only)

= O _RDWR (read and write support)
e Return type: int

3. write(int file descriptor, void * message, size_t size)
e Itis used to write / send the data from one end to another end
e |t takes three arguments. They are
1. First argument is the file object
2. Second argument is data / message
3. Third argument is the size of the data
e Return type:ssize t
4. read(int file descriptor, void * message, size_t size)
e Itis used to read / receive the data from named pipe
e |t takes three arguments. They are
1. First argument is the file object
2. Second argument is data / message

3. Third argument is the size of the data

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 118|Page

e Return type:ssize t

5. close(file descriptor)

e |tis used to close the file descriptor if it is already opened

¢ |t takes only one argument which is the file descriptor

® Return type:int

|. EXAMPLE OF IPC USING FIFO (NAMED PIPE)
(/home/runner/Latest-Shells-21/fifol.c)

System Calls : File system calls
Type of Pipe ; FIFO (Named Pipe)
Type of Communication : One way

SOURCE CODE

#include <stdio.h>

#include<sys/stat.h>

#include<string.h>

#include<fcntl.h>

#include <unistd.h>

/I global variables

char m1[]="Hello World.";

char m2[]="Good Morning.";

char m3[]="Welcome to Chennai.\n";

void sendMessage()

{
int fd;

Il create new file (FIFO) for create and write mode with necessary permission
fd=open("sms.txt",0_CREAT| O_WRONLY,0777),

/[write the three messages to named pipe

write(fd,m1,strlen(m1));

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 119|Page

write(fd,m2,strlen(m2));

write(fd,m3,strlen(m3));

printf("Three Messages are successfully sent to named pipe...\n") ;
/I close the file descriptor

close(fd);
} o)
void receiveMessage() Itis better. to use'lengt.h of sender’s
{ message in receiver side

int fp;

char bufl[100],buf2[100],buf3[100];
/I open same file (FIFO) for read mod
fp=open("sms.txt",0_RDONLY);
/Il read three messages from
read(fp,bufl,strlen(ml));
read(fp,buf2,strlen(m2);
read(fp,buf3,strlen(m3));
printf("Messages from FIFO:
PrNtf(*----------mm-m oo A ");
printf("\t%s\n",bufl);
printf("\t%s\n",buf2);
printf(*\i%s\n",buf3);
/I close the file descriptor

Same FIFO file can be used for

reading mode.
close(fp);

int main()

{

printf("\i\tIPC using FIFO (Named Pipe)\n");

sendMessage();

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 120|Page

receiveMessage();
return 99;

}
OUTPUT

Console Shell

» 1s QX
a.out arr4.sh hello ipcpipe.c pipl.c pipeex3.c testZ.c
arrl.sh fifol.c hello.c main.sh pipel.c pipeext.c tp
arr2.sh forkinshelll.sh hello.txt mag.txt pipeexl.c sc wel.c
arr3.sh hell ipcpipel.c npc.txt pipeex2.c scl.c wel.txt

» gee fifol.c

Three Messages are successfully sent to named pipe...
Messages from FIFO:

Helle World.
Good Morning.
Welcome to Chennail.

* 1s
a.out fifol.c hello.txt npc.th pipeex3d.c test2.c

arrl.sh forkinshelll.sh ipcpipel.c pipk.c pipeexdi.c tp

arr2.sh hell ipcpipe.c pipel.c sc wel.c
arr3.sh hello main.sh pipeexl.c | scl.c wel.txt
arrd.sh hello.c mag.txt pipeexZ.c

* cat sm3.txt

Hello World.Good Morning.Welcome to Chennai.

* 1s -1 sms.txt

-rwxr-xr-x 1 runner runner 45 May 26 05:42 sma.txt

RESULT

Thus the interprocess communication using named pipe has been
executed successfully.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 121|Page

EX.NO: 9

AlM

THREADING

TASK BASED TYPES

1. Single Threading

2. Multithreading

MULTITHREADING USING PYTHON

To practice the multithreading programming using python language.

Thread is a path of the execution within a process.

DIFFERENCE BETWEEN SINGLE THREAD AND MULTIPLE THREADS

S.N | SINGLE THREAD MULTITHREADING
1. | Performs single task Performs multitasking. Doing more
than one job at the same time
2. | It consists of only one thread | It consists of several threads
3. | ltis used for experimental It is used for larger tasks
purpose

LIFE CYCLE OF THREADS

Thread has five life cycles. It is always live in any of the state.

1. New born state (New state)

2. Runnable state

3. Running state (execution state)

4. Blocked state

5. Dead state (End state)

BUILT-IN METHODS

1. start()

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

This is runnable state (waiting for the execution)

This is method is used to start the thread

122|Page

e Return type : nothing
2. threading.currentThread().getName()

e This method is used to display the name of currently executing or
running thread

e Return type : String
Thread Creation

e Thread is created by using the super class Thread
Thread(name=<user-defined-name, target=<function-name>,)

e |tis a built-in class which is used to create a new thread object

e It takes two or more arguments

e First argument is name of thread. It can be any name set by the user. It
IS optional argument

e Second argument is target which is used to call the user defined
function

Required Module

threading

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 123|Page

I. EXAMPLE OF SINGLE THREAD

Tools used : VSC Editor
Platform OS : Windows 10
Language Python 3

SOURCE CODE
from threading import *

user defined function

def welcome():

print("Hello World...")

start the thread by H1g start method

tl.start()

OUTPUT

TERMINAL

C: \Users\Krishna\Documents\Ganesh VS\Lab21>py sthreadl.py

Hello World...

C:\Users\Krishna\Documents\Ganesh V5\Lab21>]

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

(9
|| Newborn state

6
Runnable state

124|Page

Pictorial Diagram

Current Thread (Main Thread)

l

Sub Thread
t1

MULTITHREADING

e Process of executing more than one thread at the same time (Execution
of multiple threads simultaneously)

e Itis an important to note that, we can’t predict which thread will run first.
e By all the threads will be running in parallel at the same time.

e Itis an important to note that, the main or current thread can randomly
start any thread from the list of threads.

[I. EXAMPLE OF MULTITHREADING

(Asynchronous Processes)

Tools used : VSC Editor
Platform OS : Windows 10
Language : Python 3

SOURCE CODE
from threading import *
user defined function 1
def m1():
for i in range(3):
print("Good Morning...")
user defined function 2

def m2():

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 125|Page

for i in range(3):
print("Good Evening...")
user defined function 3
def m3():
for i in range(3):

print("Good Night...")

creating objects for multiple threads
t1=Thread(target=m1,name="Morning")
t2=Thread(target=m2,name="Evening")
t3=Thread(target=m3,name="Night")

start the threads by calling start method
tl.start()

t2.start()

t3.start()

Pictorial Diagram

Current Thread (Main Thread)

Sub Thread Sub Thread Sub Thread
t1l t2 t3
IT7411 — OS LABORATORY (4/8 B.TECH — IT) 126|Page

OUTPUT

OUTPUT TERMINAL DEE

C:\Users\Krishna\Documents\Ganesh V5\Lab21»py mthreadl.py

Good Morning...
Good Morning...
Good Morning...
Good Evening...
Good Evening...
Good Night...
Good Might...
Good Might...
Good Evening...

C:\Users\Krishna\Documents\Ganesh V5\Lab21»py mthreadl.py

Good Morning...
Good Morning...
Good Evening...
Good Mo r,
Good Evening...
Good Evening...
Good Might...
Good Might...
Good Might...

C:\Users\Krishna\Documents\Ganesh VS\Lab21>]

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

127|Page

[ll. EXAMPLE OF MULTITHREADING

(Synchronous Processes using join() method)

Tools used : VSC Editor
Platform OS : Windows 10
Language : Python 3

Existing Issues

e By default, the threads are running parallel in multithreading

e In the execution of multithreading using asynchronous methods, the
threads will be running in parallel. That's why the output came
differently in the previous example.

e So in order to execute thread one by one (sequential order) during the
multithreading, the join method will be used.

SOURCE CODE

from threading import *
user defined function 1
def m1():

for i in range(3):

print("Good Morning...")

user defined function 2
def m2():

for i in range(3):

print("Good Evening...")

user defined function 3
def m3():
for i in range(3):
print("Good Night...")

Print("--=--m-mmmmmmm oo ")
print("\tMultithreading")
(AR ——— ")

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 128|Page

creating objects for multiple threads
t1=Thread(target=m1,name="Morning")
t2=Thread(target=m2,name="Evening")
t3=Thread(target=m3,name="Night")

start thread 1

tl.start()

wait until thread 1 is finished (main and sub threads t2, t3 should wait)
t1.join()

start thread 2 after thread 1

t2.start()

wait until thread 2 is finished (main and sub threads t1, t3 should walit)
t2.join()

start thread 3 after thread 2

t3.start()

wait until thread 3 is finished (main and sub threads t1, t2 should walit)
t3.join()

end of the main thread

print("End of the main thread...")

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 129|Page

OUTPUT

PROBLEMS (118 PU TERMINAL

C:Wsers\Krishna\Documents\Ganesh VS\Lab21>py mthread2.py

Good Morning. ..

Good Morning. ..

Good Morning. ..

Good Evening...

Good Evening...

Good Evening...

Good Might... — —_
Good Night... | \ ’%
Good Night... = -
End of the main thread...

Good Morning...

Good Morning. ..

Good Morning. ..

Good Evening...

Good Evening...

Good Evening...

Good Night...

Good Night...

Good Night...

End of the main thread...

Good Morning. ..

Good Morning...

Good Morning...

Good Evening...

Good Evening...

Good Evening...

Good Night...

Good Night...

Good Might...

End of the main thread...

C:\Users\Krishna\Documents\Ganesh VS\Lab21>]

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

130|Page

IV. DETECTION OF CURRENTLY EXECUTING THREAD

Tools used : VSC Editor
Platform OS : Windows 10
Language : Python 3

SOURCE CODE

from threading import *

import threading

user defined function 1

def m1():
tname=threading.currentThread().getName()
print("Current Thread\t: ",tname)
print("Good Morning...")

user defined function 2

def m2():
tname=threading.currentThread().getName()
print("Current Thread\t: ",tname)
print("Good Evening...")

user defined function 3

def m3():
tname=threading.currentThread().getName()
print("Current Thread\t: ",tname)
print("Good Night...")

main thread

PrNT(*-=m-mmmmm e m e m s e ")
print("\tFinding Current Thread - Multithreading")
PHNE("--mmmmm e m e m e ")

creating objects for multiple threads
t1=Thread(target=m1,name="Morning")
t2=Thread(target=m2,name="Evening")
t3=Thread(target=m3,name="Night")

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 131|Page

start threads

tl.start()

t2.start()

t3.start()

end of the main thread
print("End of the main thread...")

OUTPUT

TRUT TERMINAL

C:\Users\Krishna\Documents\Ganesh V5\Lab21>py mthread3.py

Current Thread : Morning
Good Morning. ..

Current Thread : Evening
Good Evening...

Current Thread : Night
End of the main thread...
Good Night...

C: \Users\Krishna\Documents\Ganesh Vs\Lab21>]

GENERAL TYPES OF THREAD

e Like java, python supports two types of threads. They are

1. Daemon thread
2. Non daemon thread (User Thread)
1. Daemon Thread

e If athread is running in background mode, then it is called as daemon
thread

e It has low priority level than user thread

e This is created by adding the boolean value to the daemon argument of
the Thread class.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 132|Page

2. Non Daemon Thread

If a thread is running in foreground mode, then it is called as non

daemon thread (user thread)

It has high priority level than daemon thread
This is created by the thread class.

DIFFERENCE BETWEEN DAEMON THREAD AND NON DAEMON

THREAD
S.N | DAEMON THREAD NON DAEMON THREAD

1. | Itis always runsin It is always runs in foreground mode
background mode

2. | Main program does not wait Here main program waits for user
for daemon thread to finish threads have to terminate
its task

3. | It has low priority It has high priority

4. | Itis not used for important Any important task is done by the user
task. It is generally used for | thread.
some background tasks
which are not important

5. | Itis created by the Python It is created by the application or
Virtual Machine (PVM) program.

6. | If all the threads are finished | PVM won’t force the user threads for
their execution, the PVM will | termination. So it waits for user threads
force the daemon threads to | to terminate themselves.
finish their execution.

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

133|Page

I. EXAMPLE OF DAEMON THREAD

Tools used : VSC Editor
Platform OS : Windows 10
Language : Python 3

SOURCE CODE

from threading import *
from time import sleep
user defined function 1
def m1():
for i in range(3):
print("Good Morning...")
sleep(2)
user defined function 2
def m2():
for i in range(3):
print("Good Evening...")

user defined function 3
def m3():

Convert user thread to non-
daemon thread.

C— 1§

for i in range(3):
print("Good Night...")

L —)
print("\tDaemon Thread")
PrANE("-mmmmmmmmm oo)

creating objects for multiple threads

convert thread t1 to daemon thread by setting the boolean true to the
daemon argument of thread class

t1=Thread(target=m1,name="Morning", daemon=True)
non daemon threads
t2=Thread(target=m2,name="Evening")
t3=Thread(target=m3,name="Night")

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 134|Page

start the thread by calling start method
tl.start()
t2.start()
t3.start()

OUTPUT

Good Morning...
Good Evening...
Good Evening...
Good Night...
Good Evening...
Good Night...
Good Night...

C: \Users\Krishna\Documents\Ganesh VSY Lab21>-l

¢ Inthe above output screenshot, the daemon thread t1 - Good Morning
is still running in the background mode.

e Eventhough all threads (including main thread) are terminated, the
daemon thread is still aliving and running in the background.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 135|Page

IIl. EXAMPLE OF NON DAEMON THREAD

Tools used : VSC Editor
Platform OS : Windows 10
Language : Python 3

SOURCE CODE

from threading import *
from time import sleep
user defined function 1
def m1():
for i in range(3):
print("Good Morning...")
sleep(2)
user defined function 2
def m2():
for i in range(3):
print("Good Evening...")
user defined function 3
def m3():
for i in range(3):
print("Good Night...")

PrNE(" == mmmm e m e ")
print("\tNon Daemon Thread(User Threads)")
PrANT(*-==-mm == m e mm oo oo e)

creating objects for multiple threads

Non Daemon Threads
t1=Thread(target=m1,name="Morning")
t2=Thread(target=m2,name="Evening")
t3=Thread(target=m3,name="Night")

start the threads by calling start method
tl.start()

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 136|Page

t2.start()
t3.start()

OUTPUT

TERMINAL D SOLE v +v H <

C:\Users\Krishna\Documents\Ganesh VS\Lab21>py mthreadd.py

Good Morning...

Good Evening...

Good Evening. . In the previous example, main thread and user threads
Good Night...

Good Evening. .. are terminated. But still daemon thread t1-> Good
T Morning is running in background jobs.

C:\Users\Krishna\Documents\Ganesh V5\Lab21>py mthreads.py

Good Morning...
Good Evening...

Good Evening. . . Here, main thread and user threads are terminated. No

Good Evening... . .
Good Night. . threads are running in background.

Good MNight. . /

Good Night...
Good Morning...
Good Morning.~.

C:\Users\Krishna\Documents\Ganesh VS\Lab21>]]

RESULT

Thus the multithreading programming using python has been executed
successfully.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 137|Page

EX.NO: 10 FILE ALLOCATION STRATEGIES

AIM
To practice the file allocation strategy in linux programming.
FILE ALLOCATION METHODS

e It defines, how the files are stored in the disk blocks.

e |t supports three methods. They are
1. Sequential File Allocation (Contiguous Allocation)
2. Indexed File Allocation
3. Linked File Allocation

BENEFITS

o Efficient disk space utilization

e [Fast access to the file blocks
1. SEQUENTIAL FILE ALLOCATION (CONTIGUOUS ALLOCATION)

e Process of allocating resources to the contiguous blocks are called as
sequential file allocation

e Both sequential and direct accesses are supported by this method.
e The directory entry for a file with contiguous allocation contains
» Address of starting block

» Length of the allocated portion.

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 138|Page

Example 1

Directory
file start length
count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2
Example 2
@ |File Name| Start Lenght |Allocated
[e] [1] [2] abctext | 0 3 0,1,2
/’E] [s] [5] videompd| 4 2 45
Blocks (7] |
@ jtpdocx | 9 3 9,10,11
Hard Disk Directory
Contiguous Allocation
139|Page

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

I. EXAMPLE OF SEQUENTIAL ALLOCATION METHOD
SOURCE CODE

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#define BLOCKSIZE 50

int b[BLOCKSIZE+1];

int number,length;

void seq_fileallocation()

{
printf("Enter the block number: ");
scanf("%d",&number);

/I check for invalid number
if(number>BLOCKSIZE)
{

printf("Invalid Block Number.\nPlease Enter the block number in the
range between 1 to 50\n");

}

else
{
Il check the slot is free or not
if(b[number]==0)
{
printf("Enter the number of lengths for the block %d: *, number);
scanf("%d",&length);
int c=0;
/I increment the counter for the blocks which are given by the user
for(int i=number;i<number+length;i++)
{
if(b[i]==0)
{

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 140|Page

C++:

}
}
/I if counter equals to exact length, then slot should be free
if(c==length)
{

/l allocate file / block for the user request
for(int i=number;i<number+length;i++)
{
b[i]=1;
printf("block %d is allocated ...\n",i);
}

printf("File is allocated successfully for the block %d\n",number);

}
else if((number+length)>BLOCKSIZE)

{

printf("File lengths are too out of range than MAX Capacity of Block
%d...\n",BLOCKSIZE);

}

else

{

printf("File lengths are not free for the given block\n");

}

else

{

printf("File / Block is already Allocated\nPlease try some block
%d\n",;number);

}

}

/Il print the contents of table

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 141|Page

void disp()
{
for(int i=1;i<BLOCKSIZE+1;i++)
{
printf(" %d",bl[i]);
if(i%8==0)
printf("\n");
}
printf("\n");
}
int main()
{
// allot the inputs for the blocks
for(int i=1;i<BLOCKSIZE+1;i++)
{
b[i]=0;
}
printf(“Initial Block Table\n");
disp();
char ch[150];
while(5)
{

printf("Before File Allocation, Table Contents:\n");

disp();
seq_fileallocation();
printf("After File Allocation, Table Contents:\n");

disp();
printf("Do you want to continue: Press Yes / No : ");

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

142 |Page

scanf("%s",ch);

if(strcmp(ch, "yes")==0||strcmp(ch, "Yes")==0||strcmp(ch, "YES")==0)
continue;

else
exit(1);

Allocation for Block Number 12 and its Lengths 5

Console Shell

gcc

= .fa.out

Initial Block Table
0 [1 1]

File RAllocation, Table Contents:
1] 00

Enter the block number: 12
Enter the number of lengths for the block 12: 5
block 12 is allocate
block 13 is ate
block 14 is)
block 15 is allocated ...
block 16 is allocated ...
File is allocated successfully for the block 12
After File Allocation, Table Contents:
0 0 00

continue: Press Yes / No : Yes

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 143|Page

Allocation for Block Number 3 and its Lengths 7 after that checking
block number 9

Console Shell

Before File Allocation, Table Contents:
00 1] 00

0
Enter the block number: 3
Enter the number of lengths for the block 3: 7
block 3 i llocated ...
block i llocated ...
block is allocated ...
block 15 allocated ...
block 15 allocated ...
block 1s allocated ...
block iz allocated ...
File is allocated successfully for the block 3
After File Allocation, Table Contents:

11

continue: Press Yes / No : yes

File Allocation, Table Contents:
1 11

Enter the block number: 9
File / Block is already Allocated
Please try scme block 9

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 144|Page

Allocation for Block Number 49 and its Lengths 5

Console Shell

Do you want to continue: Press Yes / No : yes

Before File Allccation, Table Contents:
0 1 11

Enter the block number: 49
Enter the number of lengths for the block 49: 5
File lengths are too ocut of range than MAX Capacity of Bleck 50...
After File Allecation, Table Contents:
1 11

continue: Press Yes / No : yes

Before File Allccation, Table Contents:
0 1 11

Enter the block number: 45

Enter the number of lengths for the block 49:

block 49 is allocated ...

block 50 is allocated ...

File is allocated successfully for the block

after File Alleccation, Table Contents:
00111111

10011111
000O00O0O0CO0

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 145|Page

Allocation for Block Number 49 and its Lengths 5 (-Continue) after that
checking block number 50

N
=)
T

Console

0
Enter the block number: 49
Enter the number of lengths for the block 49: 2
block 49 is allocated ...
block 50 is allocated ...
File is allocated successfully for the block 4%
After File Allecation, Table Contents:

1 11

continue: Press Yes / No : yes

File Allccaticn, Table Contents:
1 11

Enter the block number: 50

File / Block is already Allocated

Please try some block 50

after File Zllo
0 1 1

ation, Table Contents:

(=T == T = B = T C ¢

continue: Press Yes / No : I

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 146|Page

2. INDEXED AL FILE ALLOCATION

e Unlike sequential file allocation, this method uses an additional block
called as the index block which is used to store all the disk pointers

e For each file, there is an individual index block.

¢ In the index block, the ith entry holds the disk address of the ith file
block.

e Itis an important to note that, indexed block does not hold the file data,
but it holds the pointers to all the disk blocks allotted to the particular file.

e The directory entry contains the address of the index block as shown in
the below image:

PICTORIAL REPRESENTATION

/—_\ Directory Entry

File Index Block

bus 11

@ File Index Block

ojojafo!
[G

11 Blocks

Hard Disk

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 147 |Page

[I. EXAMPLE OF INDEXED ALLOCATION METHOD
SOURCE CODE

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#define BLOCKSIZE 50

int b[BLOCKSIZE+1], ib[BLOCKSIZE+1];

int number,length;

void indexed_allocation()

{
printf("Enter the index block number: ");
scanf("%d",&number);

/I check for invalid number
if(number>BLOCKSIZE)
{

printf("Invalid index Block Number.\nPlease Enter the index block number
in the range between 1 to 50\n");

}

else
{
Il check the slot is free or not
if(b[number]==0)
{
printf("Enter the number of files for the block %d: ", number);
scanf("%d",&length);
printf("Enter the blocks:\n");
for(int i=0;i<length;i++)
{
printf("Files #%d: ",(i+1));
scanf("%d", &ib[i]);

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 148|Page

int c=0;
/I increment the counter for the blocks which are given by the user
for(int i=0;i<length;i++)
{
if(b[ib[i]]>BLOCKSIZE)
{

printf("Index Block is Out of Range.\nPlease enter the blocks in
the range between 1-50\n");

break;
}
else if(b[ib[i]]==0)
{

CH++;

}

/I if counter equals to exact length, then slot should be free
if(c==length)
{

/[allocate file / block for the user request

for(int i=0;i<length;i++)

{
b[ib[i]]=1;
printf("Index block %d is allocated ...\n",ib[i]);
}
printf("File is allocated successfully for the block %d\n",;number);
}
/'if the submitted index block is greater than MAXIMUM give message
else
{

printf("File lengths are not free for the given block\n");

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 149|Page

}

else

{

printf("File / Block is already Allocated\nPlease try some block");

}

/I print the contents of table
void disp()
{
for(int i=1;i<BLOCKSIZE+1;i++)
{
printf(" %d",b[i]);
if(i%8==0)
printf("\n");
}
printf("*\n");
}
int main()
{
/[allot the inputs for the blocks
for(int i=1;i<BLOCKSIZE+1;i++)
{
b[i]=0;
}
printf("Initial Block Table\n");
disp();
char ch[150];
while(5)

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

150|Page

printf(*\tlndexed File Allocation\n");

1] —— "):
printf("Before File Allocation, Table Contents:\n");
disp();

indexed_allocation();

printf("After File Allocation, Table Contents:\n");

disp();

printf("Do you want to continue: Press Yes / No : ");

scanf("%s",ch);

if(strcmp(ch, "yes")==0||strcmp(ch, "Yes")==0||strcmp(ch, "YES")==0)
continue;

else
exit(1);

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 151|Page

ALLOCATION OF INDEX BLOCK 5

Initial Block Table
li] 00

Before File Rllocation, Table Contents:
li] li] 0o

Enter the index block number: 5
Enter the number of files for the bleock 5: 7
Enter the blccks:

Files §1: 3

Files §2: 21

Fileas §3:

Files §4:

Files §5:

Files f6:

Files §7:

Index bloc

Index block

Index block is

Index block is

Index block 27 is ated .
Index block is a ated ..

Index block 32 is allocated ...

File is allocated successfully for the block 5

IT7411 — OS LABORATORY (4/8 B.TECH —IT)

152|Page

ALLOCATION OF INDEX BLOCK 5 — (Continue)

Console Shell

Enter blocks:

Files $1: 3

Files #2: 21

Files #3: 41

Files §4: 50

Files §5: 27

Files f6: 14

Files §7: 32

Index block

Index block is

Index block is

Index block is

Index block 27 is allocate
Index block iz allocated
Index bleck 32 is allocated ...

File is allocated succeaafully for the block 5
After File Alloccation, Table Contents:
00 0 00

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 153|Page

ALLOCATION OF INDEX BLOCK 35

Console Shell

» File Allocaticon, Table Contents:
0 0

Enter the index block number: 35
Enter the number of files for the block 35: 3
Enter the blocks:
Files §1: S
Files §2: 44
Files #3: 18
Index block 9 is allocated ...
Index block 44 is allocated ...
Index block 18 is allocated ...
File is allocated successfully for the block 35
After File Allocation, Table Contents:
0 00

continue: Press Yes / No : yes

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 154|Page

CHECKING ALREADY ALLOCATED INDEX BLOCKS FOR 32, 50

Console Shell

Do you want to continue: Press Yes / No : yes

File Allocation, Table Contents:
0 00

Enter the index bleck number: 32

File / Block is already Allocated

Flease try some blockAfter File RAllocation, Table Contents:
i} i} i}

you want to continue: Press Yes / No : yes

File Allocation, Table Contents:
0 00

Enter the index block number: 50

File / Block is already Allocated

Flease try some blockAfter File Allocation, Table Contents:
00 0 0

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 155|Page

CHECKING INVALID INDEX NUMBER 59

Console Shell

: File Allocation, Table Contents:
li] 0

Enter the index block number: 59
Invalid index Block Number.
Please Enter the index block number in the range between 1 to 50
After File Allocation, Table Contents:
00 0 00

10
01
00
00
10
01

IT7411 — OS LABORATORY (4/8 B.TECH — IT) 156|Page

CHECKING ALREADY ALLOCATED INDEX NUMBERS 14, 25

Console Shell

Enter the index block number: 14

File / Block is already Allocated

Please try some blockAfter File Allocation, Table Contents:
0 0

continue: Press Yes / No : yes

File Alleccation, Table Contents:
0 00

Enter the index block number: 25
Enter the number of files for the block 25: 2
Enter the blocksa:
Files #1: 21
Files §2: 41
File lengths are not free for the given block
After File Allocation, Table Contents:
0 o0

continue: Press Yes / No : yes

Before File Allecation, Table Contents:
00100000

10000100
01001000

RESULT

Thus the file allocation strategies like sequential and indexed file
allocation methods have been executed successfully.

IT7411 — OS LABORATORY (4/8 B.TECH —IT) 157|Page

