

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 1|Page

MADRAS INSTITUTE OF TECHNOLOGY

ANNA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

IT7411 – OPERATING SYSTEMS LABORATORY

LAB MANUAL

REGULATION - 2015

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 2|Page

Vision of the Department

To educate students with conceptual knowledge and technical skills in the field of

Information Technology with moral and ethical values to achieve excellence in an academic,

industry and research centric environment.

Mission of the Department

1. To inculcate in students a firm foundation in theory and practice of IT skills coupled with

the thought process for disruptive innovation and research methodologies, to keep pace with

emerging technologies.

2. To provide a conducive environment for all academic, administrative, and interdisciplinary

research activities using state-of-the-art technologies.

3. To stimulate the growth of graduates and doctorates, who will enter the workforce

as productive IT engineers, researchers, and entrepreneurs with necessary soft skills, and

continue higher professional education with competence in the global market.

4. To enable seamless collaboration with the IT industry and Government for consultancy and

sponsored research.

5. To cater to cross-cultural, multinational, and demographic diversity of students.

6. To educate the students on the social, ethical, and moral values needed to make significant

contributions to society.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 3|Page

Program Educational Objectives (PEO)

After completion of the B.Tech. (IT) course, students will be able to:

PEO1: Demonstrate core competence in basic engineering and mathematics to design,

formulate, analyse, and solve hardware/ software engineering problems.

PEO2: Have insight in fundamental areas of Information Technology and related engineering

with an inclination towards self-learning to address real-world problems using digital and

cognitive technologies.

PEO3: Collaborate with industry, academic and research institutions for product and research

related development.

PEO4: Imbibe high professionalism, effective communication skills and team spirit to work

on multidisciplinary projects, in diverse professional environments.

PEO5: Practice IT solutions following technical standards with ethical values.

Program Specific Outcomes(PSO)

PSO1: To apply programming principles and practices for the design of software solutions in

an internet-enabled world of business and social activities.

PSO2: To identify the resources to build and manage the IT infrastructure using the current

technologies in order to solve real world problems with an understanding of the trade-offs

involved in the design choices.

PSO3: To plan, design and execute projects for the development of intelligent systems with a

focus on the future

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 4|Page

IT7411 OPERATING SYSTEMS LABORATORY L T P C

 0 0 4 2

OBJECTIVES:

 To learn about the basic commands of operating systems

 To learn various process management schemes in operating systems

 To practice with the important memory management mechanisms in operating system

 To implement the file handling techniques in operating systems

Exercises

1. Basic unix commands such as ls, cd, mkdir, rmdir, cp, rm, mv, more, lpr, man, grep, sed,

etc.,

2. Shell script

3. Process control System calls - demonstration of fork, execute and wait

4. Thread management

5. Thread synchronization

6. Deadlock avoidance using semaphores

7. Interprocess communication using pipes

8. Interprocess communication using FIFOs

9. Interprocess communication using signals

10. Implementation of CPU scheduling policy in Linux

11. Implement a memory management policy in Linux

12. Implement a file system in Linux

13. Linux kernel configuration

TOTAL: 60 PERIODS

OUTCOMES:

On Completion of the course, the students should be able to:

 Learn the concepts to identify, create and maintain the basic command in operating

systems

 Express strengths and limitations of various managements schemes in operating

systems

 Explain the core issues of operating systems

 Implement algorithms of operating systems.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 5|Page

Mapping of Course Outcomes (COs) with Program Outcomes (POs)

CO
Program Outcomes(POs)

PSO1 PSO2 PSO3
1 2 3 4 5 6 7 8 9 10 11 12

Learn the

concepts to

identify, create

and use the

basic command

in operating
systems

1 2 3 1 1 1 0 0 0 0 0 2 2 2 2

Familiarize

strengths and

limitations of

various

managements

schemes in

operating

systems

1 2 3 2 1 0 0 0 0 0 0 1 2 2 2

Implement core

concepts/ issues

of operating

systems

1 2 2 3 3 1 0 0 0 0 1 1 2 2 2

Implement

algorithms of

operating

systems

1 2 2 3 3 2 2 0 0 0 1 1 2 2 2

Exploration of

memory

management

methodologies

1 2 2 3 3 2 2 0 0 0 1 1 2 2 2

Exploration of

interprocess

communication

strategies

1 2 3 3 3 3 3 1 0 0 1 1 2 2 2

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 6|Page

GRADING RUBRIC FOR LABORATORY COURSES

Good Marks

(81%-100%)

Average Marks

(50%-80%)

Satisfactory Marks

(< 50%)

Continuous

Assessment

(Covers Preparedness,

Basic implementation,

Ability to adapt additional

features and coding

standards) (Max

Marks:25)

Presence of detailed

procedure, coding samples
with proper
implementation.

Able to adapt the changes in

the code quickly.

Proper Coding Style.

Clarity of the procedure
and coding samples are

average with partial
implementation. Able to
understand the changes

but unable to implement it.
Fairly presented code with

medium standards.

Lack of detailed procedure
as well as coding samples

with incorrect
implementation.

Unable to adapt the changes

in coding.

Coding standards are not

followed. Code is messy.

Laboratory Test (Covers
Understanding of problem,

Basic Problem Solving and
Ability to code, test, run

and debug within the

stipulated time) (Max

Marks:25)

Problem understood clearly

and solved.

Complete implementation

with proper test data within

the stipulated time.

Problem understood but

problem solving is not full-
fledged.
Completion of three fourths

of the implementation with

proper test data.

Lack of understanding and
problem-solving ability is
poor.
Implementation not

completed/ Partial

implementation within the

stipulated time.

Course Oriented

Laboratory Project

(Covers Problem

Selection,

Demonstration of the

Project, Wide coverage of
concepts in the target
language) (Max

Marks:25)

Selection of good real time

problem with Complete

implementation with in-

depth understanding on the

concepts implemented.

Wide coverage of concepts

in the target language.

Selection of good real time

problem with partially

complete implementation

and good knowledge on the

concepts implemented.

Moderate coverage of

concepts.

Selection of fair problem
with incomplete
implementation. Lack of

proper knowledge and
understanding on the
concepts implemented.

Limited coverage of

concepts.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 7|Page

S.NO

NAME OF THE EXPERIMENT

1. INTRODUCTION TO OPERATING SYSTEMS

2. LINUX COMMANDS FILE SYSTEM

3. SHELL PROGRAMMING BASICS

4. SHELL SCRIPTING – OPERATORS, FUNCTIONS

5. SHELL ARRAYS

6. PROCESS SYSTEM CALLS – FORK, EXIT, WAIT

7. INTERPROCESS COMMUNICATION USING PIPE

8. INTERPROCESS COMMUNICATION USING NAMED

PIPE

9. MULTITHREADING USING PYTHON

10. FILE ALLOCATION STRATEGIES

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 8|Page

EX.NO: 1 INTRODUCTION TO OPERATING SYSTEMS

AIM

To the study the functions of an operating system.

1.1 OVERVIEW

An Operating System (OS)(as shown in Fig 1) is an interface between a
computer user and computer hardware. An operating system is a software
which performs all the basic tasks like file management, memory management,
process management, handling input and output, and controlling peripheral
devices such as disk drives and printers.

Some popular Operating Systems include Linux Operating System,
Windows Operating System, VMS, OS/400, AIX, z/OS, etc. Following are some
of important functions of an operating System:

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

 Control over system performance

 Job accounting

 Error detecting aids

 Coordination between other software and end users.

Figure 1. Operating System

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 9|Page

1.2 LINUX OPERATING SYSTEM

Linux is a free and open source operating system and it is a clone version
of UNIX operating system. It is open source as its source code is freely
available. It is free to use. Linux was designed considering UNIX compatibility.
Its functionality list is quite similar to that of UNIX.

1.2.1 LINUX ARCHITECTURE

Figure 2. Linux OS Architecture

The architecture of a linux system consists of the following layers −

Hardware layer

Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).

Kernel

It is the core component of Operating System, interacts directly with

hardware, provides low level services to upper layer components.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 10|Page

Shell

An interface to kernel, hiding complexity of kernel's functions from users.

The shell takes commands from the user and executes kernel's functions.

Utilities

Utility programs that provide the user most of the functionalities of an

operating systems.

1.2.2 COMPONENTS OF A LINUX OPERATING SYSTEM

Linux operating system has primarily three components:

Kernel

Kernel is the core part of linux. It is responsible for all major activities of

this operating system. It consists of various modules and it interacts directly with

the underlying hardware. Kernel provides the required abstraction to hide low

level hardware details to system or application programs.

System Library

System libraries are special functions or programs using which

application programs or system utilities accesses Kernel's features. These

libraries implement most of the functionalities of the operating system and do

not requires kernel module's code access rights.

System Utility

System Utility programs are responsible to do specialized, individual level

tasks.

Figure 3. Linux Operating System

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 11|Page

1.2.3 KERNEL MODE VS USER MODE

Kernel component code executes in a special privileged mode called

kernel mode with full access to all resources of the computer. This code

represents a single process, executes in single address space and do not

require any context switch and hence is very efficient and fast. Kernel runs each

processes and provides system services to processes, provides protected

access to hardware to processes.

Support code which is not required to run in kernel mode is in System

Library. User programs and other system programs works in User Mode which

has no access to system hardware and kernel code. User programs/ utilities

use System libraries to access Kernel functions to get system's low level tasks.

1.2.4 BASIC FEATURES

Following are some of the important features of linux operating system

 Portable

Portability means software can work on different types of hardware in

same way. Linux kernel and application programs supports their installation on

any kind of hardware platform.

 Open Source

Linux source code is freely available and it is community based

development project. Multiple teams work in collaboration to enhance the

capability of Linux operating system and it is continuously evolving.

 Multi User

Linux is a multiuser system means multiple users can access system

resources like memory/ ram/ application programs at same time.

 Multiprogramming

Linux is a multiprogramming system means multiple applications can run

at same time.

 Hierarchical File System

Linux provides a standard file structure in which system files/ user files

are arranged.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 12|Page

 Shell

Linux provides a special interpreter program which can be used to execute

commands of the operating system. It can be used to do various types of

operations, call application programs. etc.

 Security

Linux provides user security using authentication features like password

protection/ controlled access to specific files/ encryption of data.

1.3 COMPARISONS BETWEEN LINUX OS WITH DIFFERENT OS

1.3.1 LINUX VS WINDOWS

Linux OS

Linux could be a free and open supply OS supported operating system

standards. It provides programming interface still as programme compatible

with operating system primarily based systems and provides giant selection

applications. A UNIX operating system additionally contains several severally

developed parts, leading to UNIX operating system that is totally compatible

and free from proprietary.

Windows OS

Windows may be a commissioned OS within which ASCII text file is

inaccessible. it’s designed for the people with the angle of getting no

programming information and for business and alternative industrial users. it‟s

terribly straightforward and simple to use.

The distinction between Linux and Windows package is that Linux is

completely freed from price whereas windows is marketable package and is

expensive. Associate operating system could be a program meant to regulate

the pc or computer hardware.

Linux is an open supply package wherever users will access the ASCII

text file and might improve the code victimisation the system. On the opposite

hand, in windows, users can’t access ASCII text file, and it’s an authorized OS.

Let’s sees that the difference between Linux and windows:

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 13|Page

S.N LINUX WINDOWS

1. It is an open source operating
system

It is a commercial operating
system (closed source)

2. In linux, monolithic kernel is used In windows, micro kernel is used.

3. In the comparison of file system,
linux runs faster even with older
hardware

Windows are slower compared to
Linux

4. Linux files are ordered in a tree
structure starting with the root
directory.

In windows, files are stored in
folders on different data drives like
C: D: E:

5. It is customizable It is not possible to customize the
windows OS

6. It supports multiple desktop
environments

It supports only preinstalled
desktop environment

7. It is more secure than windows Vulnerable to viruses and malware
attacks.

8. Booting takes either primary or
logical partition in linux

In windows, booting supports only
primary partition

1.3.2 LINUX VS MAC

Linux

Linux is a group of open source Unix-like operating systems which was

developed by Linus Torvalds. It is a packaged of Linux distribution. Some of the

mostly used Linux distribution are Debian, Fedora and Ubuntu. It was basically

written in C language and assembly language. Kernel used in Linux is

Monolithic kernel. The target systems of Linux distributions are cloud

computing, embedded systems, mobile devices, personal computers, servers,

mainframe computers and supercomputers. The first version of Linux was

launched in 1991.

MAC

Mac OS is a series of proprietary graphical operating systems which is

provided by Apple Incorporation. It was earlier known as Mac OS X and later

OS X. It is specifically designed for Apple mac computers. It is based on Unix

operating system. It was developed using C, C++, Objective-C, assembly

language and Swift. It is the second most used operating system in personal

computers after Windows. The first version of macOS was launched by Apple

in 2001.

https://www.geeksforgeeks.org/c-language-set-1-introduction/
https://www.geeksforgeeks.org/difference-between-supercomputer-and-mainframe-computer/

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 14|Page

Let’s sees that the difference between Linux and mac:

S.N LINUX MAC

1. It is an open source operating
system

It is a commercial operating
system (closed source)

2. In linux, monolithic kernel is used MacOS is based the Xnu hybrid
micro kernel

3. It is used as OS, as server provide
platform to run other application

Mac is an operating system
provides platform to run other
application

4. It is customizable It is not possible to customize the
Mac OS

5. It supports many flavours like
RedHat, Ubuntu, Fedora, Suse,
etc,

It does have any flavours.

6. It supports multiple desktop
environments like GNOME, KDE,
Mate, Budgie, Cinnamon, Deepin
etc,…

It supports only preinstalled
desktop environment

1.3.3 LINUX VS UNIX

Linux

Linux is an open source multi-tasking, multi-user operating system. It was

initially developed by Linus Torvalds in 1991. Linux OS is widely used in

desktops, mobiles, mainframes etc.

Unix

Unix is multi-tasking, multi-user operating system but is not free to use

and is not open source. It was developed in 1969 by Ken Thompson team at

AT&T Bell Labs. It is widely used on servers, workstations etc. Following are

the important differences between Linux and Unix.

Let’s sees that the difference between Linux and windows:

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 15|Page

S.N LINUX UNIX

1. It is an open source operating
system

It is a licensed OS (closed source)

2. It is developed by linux community
of developers

It was developed by AT and T Bell
labs

3. Linux uses KDE and Gnome. Other
GUI supported are LXDE, Xfce,
Unity, Mate.

Unix was initially a command
based OS. Most of the unix
distributions now have Gnome.

4. Bash (Bourne Again SHell) is
default shell for Linux.

Bourne Shell is default shell for
Unix.

5. Its flavours are RedHat, Ubuntu,
Suse, Kali Linux, etc,…

Its flavours are SunOS, Solaris,
HP-UX, AIX, Sco Unix, etc,…

6. Linux is used in wide varieties from
desktop, servers, smartphones to
mainframes.

It is mostly used on servers,
workstations or PCs.

1.4 SCHEDULING OF JOBS IN OPERATING SYSTEM

Job scheduling is the process of allocating system resources to many

different tasks by an operating system (OS). The system handles prioritized job

queues that are awaiting CPU time and it should determine which job to be

taken from which queue and the amount of time to be allocated for the job.

This type of scheduling makes sure that all jobs are carried out fairly and

on time. Most OSs like Unix, Windows, etc., include standard job-scheduling

abilities. A number of programs including database management systems

(DBMS), backup, enterprise resource planning (ERP) and business process

management (BPM) feature specific job scheduling capabilities as well.

1.5 PROCESS MANAGEMENT

Process management involves various tasks like creation, scheduling,

termination of processes, and a dead lock. Process is a program that is under

execution, which is an important part of modern-day operating systems. The

OS must allocate resources that enable processes to share and exchange

information.

It also protects the resources of each process from other methods and

allows synchronization among processes. It is the job of OS to manage all the

running processes of the system. It handles operations by performing tasks like

process scheduling and such as resource allocation.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 16|Page

1.6 PROCESS ARCHITECTURE

Stack

The stack stores temporary data like function parameters, returns
addresses, and local variables.

Heap

It allocates memory, which may be processed during its run time.

Data

It contains the variable.

Text

It includes the current activity, which is represented by the value of
the Program Counter.

1.7 MEMORY MANAGEMENT IN OPERATING SYSTEMS

Memory management is the functionality of an operating system which

handles or manages primary memory and moves processes back and forth

between main memory and disk during execution. Memory management keeps

track of each and every memory location, regardless of either it is allocated to

some process or it is free. It checks how much memory is to be allocated to

processes. It decides which process will get memory at what time. It tracks

whenever some memory gets freed or unallocated and correspondingly it

updates the status.

The operating system takes care of mapping the logical addresses to

physical addresses at the time of memory allocation to the program. There are

three types of addresses used in a program before and after memory is

allocated –

1. Symbolic addresses

 The addresses used in a source code. The variable names, constants,

and instruction labels are the basic elements of the symbolic address space.

2. Relative addresses

At the time of compilation, a compiler converts symbolic addresses into

relative addresses.

3. Physical addresses

The loader generates these addresses at the time when a program is

loaded into main memory.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 17|Page

1.8 SYSTEM CALLS IN OPERATING SYSTEMS

System call is a mechanism that provides the interface between a

process and the operating system. It is a programmatic method in which a

computer program requests a service from the kernel of the OS. System call

offers the services of the operating system to the user programs via API

(Application Programming Interface). System calls are the only entry points for

the kernel system. For example, if we need to write a program code to read data

from one file, copy that data into another file.

The first information that the program requires is the name of the two files,

the input and output files. In an interactive system, this type of program

execution requires some system calls by OS.

 First call is to write a prompting message on the screen.

 Second, to read from the keyboard, the characters which define the two files.

1.9 DAY TO DAY USAGE OF OPERATING SYSTEMS

The operating system is used everywhere nowadays especially such as

banks, schools, colleges, universities, govt. organizations, IT companies,

mobile, etc, …

No device can operate without an operating system because it controls

all the user’s commands. Linux /unix operating systems is used in bank because

it’s very secure operating systems.

Symbian OS, windows mobile, IOS and Android OS are used in mobile

phones operating systems as these operating systems are a lightweight

operating systems.

RESULT

The architecture and features of an operating system has been studied

successfully.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 18|Page

EX.NO: 2 LINUX COMMANDS FILE SYSTEM

AIM

To study and implement about the various basic linux commands.

I. FILE RELATED COMMANDS

1. cat

 The cat command is used to create a file.

 The cat command is used to display the contents of a file.

 The cat command is also used merge multiple files into a single file

Syntax

1.1 File Creation & Display its Contents using cat command

$ cat > filename (Create a new file)

$ cat <filename> (Display the contents of file)

$ cat file1 file2 >file3 (merge the contents of file1, file2 into file 3)

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 19|Page

1. 2 Files Merging using cat command

2. ls command

 Listing files and directories

 The ls command is used to display the contents of a directory.

Syntax
 $ ls  View the contents of directory

2. Displaying Files and Folders

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 20|Page

3. clear command

 This command is used to clear the terminal screen

 $ clear

II. DIRECTORY RELATED COMMANDS

1. mkdir

 This command is used create an empty directory in a disk

Syntax
 $ mkdir <dname>

1.1 Empty Directory Creation

2. rmdir

 This command is used remove a directory from the disk

Rules for Directory Deletion

 Directory must be empty

 Directory can't be current working directory

Syntax
 $ rmdir <dname>

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 21|Page

2.1 Empty Directory Deletion

3. cd

 This command is used to move from one directory to another directory.

Syntax
 $ cd <dname>

3.1 Changing the Working Directory

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 22|Page

4. pwd

 pwd stands for "print working directory"

 This command is used to print the current working directory

Syntax
 $ cd <dname>

4.1 Displaying Current Working Directory

III. General Purpose Commands

1. date command

 This command is used to display the current date with day, month, date,
time (24 Hrs clock) & year

 $ date

1. Output

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 23|Page

2. cal command

 Linux calendar

 This command is used to display the current month, all months of
particular year

 $ cal (Show the current month of current year)

 $ cal 2015 (Show all months in year 2015)

2.1 Displaying Current Month

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 24|Page

2.2 Displaying Entire Year

3. tty command

 The tty (teletype) command is used to print the current terminal name

 $ tty

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 25|Page

3.1 Displaying Terminal Name

RESULT

 Thus the linux commands have been studied and executed
successfully.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 26|Page

EX.NO: 3 SHELL PROGRAMMING BASICS

AIM
 To execute the fundamentals of shell programming such as control flow
statements.

EXISTING PROBLEM

 It is not possible to perform more than one task at a time using shell
command

SHELL SCRIPTS (MULTITASKING)

 In order to solve the problems of shell command, the shell programming
is introduced here

 Doing more than one job at a time (multitasking)

 It is also called as shell programming

VARIABLES SECTION

 Names given to the memory location

 Shell program supports dynamic data typed system which means that
no need to use specific data type for variables declaration

Syntax

Example

Variable-Name=Initial-Value

a=10 # integer type

str=”Sachin” # string type

c=’G’ # character type

f=true # boolean value

readonly id=14 # integer constant

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 27|Page

I. EXAMPLE OF DATA TYPES IN SHELL CODE

SOURCE CODE

echo "------------------------------------"

echo "\tShell Data Types"

echo "------------------------------------"

variables definition

a=19

b=15.45

c='S'

str="Sachin"

flag=true

constant variable definition

readonly id=99

echo "Int\t\t\t\t-> $a"

echo "Float\t\t\t-> $b"

echo "Character\t\t-> $c"

echo "Name\t\t\t-> $str"

echo "Boolean\t\t\t-> $flag"

echo "Int Constant\t-> $id"

2. OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 28|Page

COMMENT LINE STATEMENTS

 Usually these statements are ignored by compiler or interpreter

 Like c/c++, shell supports two types of comment line statements. They
are

1. Single line statement

2. Multi line statements

1. Single line statement

 The single line statement is indicated by # symbol in shell program

Example

2. Multi line statements

 It is used to ignore more than one statements

 This is indicated by :’ ’ symbol in shell program

Example

SELECTION STATEMENTS

1. Simple If statement

2. If else Statement

3. If else if Statement

4. Case Statement

This is single line statement

:’ Variable Declarations

 a=20

k=25

‘

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 29|Page

1. Simple If Statement

Syntax

 It is an important to note that, the space should be given before and after

the operator symbol [

 You can use test keyword instead of the operator symbols []

2. If else Statement

Syntax

if [condition]

then

 true statement

fi

if [condition]

then

 true statement

else

 false statement

fi

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 30|Page

3. If…elif…else Statement

Syntax

 It is an important to note that, the simple if, if else and if-elif-else should

be closed by fi keyword.

4. Case Statement

 It is equivalent to switch case statements in c language

 It is used to execute several statements based on the value of expression

 This is done by using the reserved word case

 It is an alternative option for if..elif..else statements

Syntax

if [condition]

then

 true statement

elif [condition]

then

 true statement

else

 false statement

fi

case <variable> in

Pattern 1)

 Commands / statements

 ;;

Pattern 2)

Commands / statements

 ;;

 …

easc

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 31|Page

Where,

;;  represents the break part in case statements

LOOPING STATEMENTS

1. While loop (while)

2. Until loop (until)

3. For loop (for)

1. While loop

Syntax

Infinite While loop

 It is an important to note that, the colon (:) operator or true keyword is
used for creating an infinite loop

 The colon (:) operator is used instead of the operator symbols []

II. EXAMPLE OF INFINITE LOOP USING WHILE LOOP

SOURCE CODE

while :

do

 echo "Hello World"

done

(OR)

while true

do

 echo "Hello World"

while [condition]

do

 true statement

done

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 32|Page

done

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 33|Page

2. Until loop

 Here loop is executing until the condition is false

 If the condition becomes true it will exit from the loop

Syntax

III. EXAMPLE OF UNTIL LOOP

SOURCE CODE

echo "---"

echo "\t\tUntil Loop Example"

echo "---"

i=1

until [$i -gt 5]

do

 echo $i

 i=`expr $i + 1`

done

until [condition]

do

 true statement

done

Here the looping statements are executed

until the condition becomes fail like 1>5,

2>5, 3>5, 4>5, 5>5

This loop will terminate whenever the

condition becomes true like 6>5

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 34|Page

OUTPUT

3. For loop

Syntax

Where,

 Variable can be any user defined name

 w1 w2 …wn  list of the values separated by spaces

for variable in w1 w2 … wn

do

 true statement

done

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 35|Page

IV. EXAMPLE OF FOR LOOP

SOURCE CODE

echo "-------------------------------------"

echo "\t For Loop Example"

echo "-------------------------------------"

for i in 12 14 15 17 18 21

do

 echo $i

done

OUTPUT

V. CHARACTERS AND STRING RETRIEVAL USING FOR LOOP

SOURCE CODE

echo "---"

echo "\t Char & String Retrieval using for loop"

echo "---"

for i in 'Sachin' 'B' "C" "D" ‘E’

do

 echo $i

done

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 36|Page

OUTPUT

VI. DISPLAYING FILES AND DIRECTORIES USING FOR LOOP

SOURCE CODE

echo "---"

echo "\t Listing Files and Folder using for loop"

echo "---"

get all the files and store them to variable

fset=`ls`

k=1

loop the variable fset

for i in $fset

do

 echo "$k. $i"

 k=`expr $k + 1`

done

k=k+1 or k++

Store list of files to the variable fset using

ls command.

Command Substitution:

Storing the output of command to a user defined variable.

This is done by using the operator `command` or $(command)

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 37|Page

OUTPUT

VII. FACTORIAL OF A NUMBER

Language : shell (.sh)

 Editor : replit.com (Online Linux Terminal)

 OS : Windows 10

SOURCE CODE

echo "--"

echo "\t\tFactorial Program"

echo "--"

echo "Enter a number : "

read n

i=0

f=1

while [$i -lt $n]

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 38|Page

do

increment i by 1

 i=`expr $i + 1`

 f=`expr $f * $i`

done

echo "The Factorial of $n is : $f"

OUTPUT

C STYLE CODING IN SHELL

 In shell, we can use c style coding for looping statements and
expressions

 The expressions are defined by $(exp). Here each is also closed by ()
symbol.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 39|Page

VIII. FACTORIAL OF A NUMBER USING C-STYLE

SOURCE CODE

echo "--"

echo "\t\tFactorial Program- C Style"

echo "--"

echo "Enter a number : "

read n

i=1

f=1

while loop

while [$i -le $n]

do

expression 1 in c-style

 f=$((f*i))

expression 2 in c-style

 i=$((i+1))

done

echo "Factorial of $n is $f"

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 40|Page

IX. REVERSE OF A NUMBER

SOURCE CODE

echo "--"

echo "\t\tReverse of Number"

echo "--"

echo "Enter a number : "

read n

duplicate=$n

res=0

while [$n -ne 0]

do

find the reminder

 rem=`expr $n % 10`

multiply reverse number with 10

 res=`expr $res * 10`

add the resultant number with remainder number

 res=`expr $res + $rem`

divide n by 10

 n=`expr $n / 10`

done

echo "The Reverse Number of $duplicate is $res"

Read a number

while (n!=0)

rem=n%10

res=res*10

n=n/10

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 41|Page

OUTPUT

X. ARMSTRONG NUMBER

SOURCE CODE

echo "--"

echo "\t\tArmstrong Number"

echo "--"

echo "enter a number"

read n

variables declarations

dup=$n

arm=0

while loop

while test $n -ne 0

do

find remainder of a number

 rem=`expr $n % 10`

multiply rem with three times

 rem=`expr $rem * $rem * $rem`

add the resultant remainder with arm variable

while (n!=0)

rem=n%10

rem=(rem*rem*rem)

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 42|Page

 arm=`expr $arm + $rem`

divide n by 10

 n=`expr $n / 10`

done

if [$dup -eq $arm]

then

 echo "Given Number $dup is Armstrong Number"

else

 echo "Given Number $dup is not Armstrong Number"

fi

OUTPUT

XI. MENU DRIVEN PROGRAM

SOURCE CODE

while [true]

do

echo "-------------------------------------"

echo "\t\t Menu Program"

echo "-------------------------------------"

echo "1. View Files \t 2.Date"

echo "3. Users List \t4.Calendar"

echo "5. Exit"

n=n/10

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 43|Page

echo "\tEnter ur choice : "

read ch

#switch case

case $ch in

 1) ls;;

 2) date;;

 3) w;;

 4) cal;;

 5) exit;;

esac

read choice from user for continuation of program execution

echo "Do you want to continue : Press Yes/No"

read ch

if [$ch = "yes"] || [$ch = "Yes"] || [$ch = "YES"]

then

 continue

else

 exit

fi

done

NOTE

 It is an important to note that, the single equal operator (=) is used for

string comparison and the symbol –eq or == is used for number

comparison in the shell program.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 44|Page

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 45|Page

OUTPUT – (CON)

COMMAND LINE ARGUMENTS (POSITIONAL PARAMETERS)

 Process of passing the input arguments to the program at the time of
execution is called as command line arguments

 In shell, this is done with help of $ symbol

S.N POSITIONAL

PARAMETERS

DESCRIPTION

1. $0 Indicates the filename itself

2. $1 Indicates the first argument

3. $2 Indicates the second argument

 …

4. $* Represents the total number of input arguments

which are submitted to the shell program

5. $# Shows the count of total number of arguments

passed to the shell program

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 46|Page

I. EXAMPLE OF COMMAND LINE INPUTS

SOURCE CODE

echo "--"

echo "\t\tCommand Line Arguments (Input)"

echo "--"

a=$1

b=$2

check whether the command line arguments are submitted or not

if [$# -ne 0]

then

 r=`expr $a + $b`

 echo "Sum is: $r"

else

 echo "No inputs are submitted...Please submit the CMD inputs..."

fi

OUTPUT

This is equivalent to if [$# != 0]

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 47|Page

II. EXAMPLE OF COMMAND LINE INPUTS – MUCH ARGUMENTS

SOURCE CODE

echo "---"

echo "\t\tCommand Line Arguments"

echo "---"

check whether the command line arguments are submitted or not

if [$# -ne 0]

then

 echo "Total Input Arguments are Submitted: $#"

 for i in $*

 do

 echo $i

 done

else

 echo "No inputs are submitted...Please submit the CMD inputs..."

fi

OUTPUT

RESULT

Thus the basics of shell programming was executed successfully.

This is equivalent to if [$# != 0]

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 48|Page

EX.NO: 4 SHELL SCRIPTING – OPERATORS, FUNCTIONS

AIM

 To practice the different types of operators using shell programming

OPERATORS

 A special symbol which is used to perform the various tasks such as

arithmetic operations, relational operations, logical operations, file testing

operations, comparisons, etc, …

ARITHMETIC OPERATORS

S.N OPERATOR DESCRIPTION

1. + Addition

2. - Subtraction

3. * Multiplication

4. / Division

EXPRESSION IN SHELLS

 Shell provides two options for performing expressions in shell scripts.

They are

1. Using expr command  Shell style expr

2. Using double braces ()  C Style $(exp)

NOTE

 It is an important to note that, the operator * does not provide the

multiplication in shell expression using expr command. Because in shell,

the operator * means wild card characters.

 So, the backward slash followed by * symbol * is to provide the

multiplication expression in shell expression using expr command.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 49|Page

I. EXAMPLE OF ARITHMETIC OPERATIONS USING EXPR COMMAND

SOURCE CODE

echo "---"

echo "\tArithmetic Operations using expr command"

echo "---"

echo "Enter the number 1: "

read a

echo "Enter the number 2: "

read b

performing arithmetic operations using expr command

r1=`expr $a + $b`

r2=`expr $a - $b`

r3=`expr $a * $b`

r4=`expr $a / $b`

print the results

echo "Add: \t$r1"

echo "Sub: \t$r2"

echo "Mul: \t$r3"

echo "Div: \t$r4"

The usage of * in expr command does not directly

support for multiplication. Because it gives different

meanings. So the backward slash with * symbol

provides the multiplication in the expr command.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 50|Page

OUTPUT

II. EXAMPLE OF ARITHMETIC OPERATIONS USING C STYLE

SOURCE CODE

echo "---"

echo "\tArithmetic Operations using C-Style"

echo "---"

echo "Enter the number 1: "

read a

echo "Enter the number 2: "

read b

performing arithmetic operations using expr command

r1=$((a+b))

r2=$((a-b))

r3=$((a*b))

r4=$((a/b))

print the results

echo "Add: \t$r1"

echo "Sub: \t$r2"

echo "Mul: \t$r3"

echo "Div: \t$r4"

The Syntax is $(e1, e2,..en).

Each expression e1, e2, ..en can be

closed by ()

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 51|Page

OUTPUT

RELATIONAL OPERATORS

RELATIONAL OPERATORS FOR NUMBERS [using $()]

S.N OPERATOR DESCRIPTION

1. == Equal

2. != Not Equal

3. < Lesser than

4. <= Lesser than or Equal to

5. > Greater than

6. >= Greater than or Equal to

NUMERIC COMPARISON OPERATORS FOR NUMBERS

S.N OPERATOR DESCRIPTION

1. -eq Equal

2. -ne Not Equal

3. -gt Greater than

4. -ge Greater than or Equal to

5. -lt Lesser than

6. -le Lesser than or Equal to

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 52|Page

RELATIONAL OPERATORS FOR STRINGS [using if]

S.N OPERATOR DESCRIPTION

1. = Equal

2. != Not Equal

3. \< Lesser than

4. \> Greater than

III. EXAMPLE OF RELATIONAL OPERATORS USING C STYLE

SOURCE CODE

echo "---"

echo "\tRelational Operators using C-Style"

echo "---"

echo "Enter the number 1: "

read a

echo "Enter the number 2: "

read b

performing relational operators using C style $()

r1=$((a==b))

r2=$((a!=b))

r3=$((a<b))

r4=$((a<=b))

r5=$((a>b))

r6=$((a>=b))

print the relational results

echo "Equal \t\t\t\t\t\t: $r1"

echo "Not Equal \t\t\t\t\t: $r2"

echo "Lesser than \t\t\t\t: $r3"

echo "Lesser than or Equal to \t: $r4"

echo "Greater than \t\t\t\t: $r5"

echo "Greater than or Equal to \t: $r6"

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 53|Page

OUTPUT

IV. EXAMPLE OF RELATIONAL OPERATORS FOR STRINGS

SOURCE CODE

echo "---"

echo "\tRelational Operators for Strings"

echo "---"

echo "Enter the name 1: "

read a

echo "Enter the name 2: "

read b

performing relational operators for strings

if [$a = $b]

then

 echo "----------Equal Results------------------"

 echo "Both Strings are Equal"

else

 echo "----------Equal Results------------------"

 echo "Both Strings are NOT Equal"

fi

if [$a != $b]

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 54|Page

then

 echo "----------NOT Equal Results------------------"

 echo "Both Strings are NOT Equal"

else

 echo "----------NOT Equal Results------------------"

 echo "Both Strings are Equal"

fi

if [$a \> $b]

then

 echo "----------Greater Results------------------"

 echo "$a is Greater than $b"

else

 echo "----------Greater Results------------------"

 echo "$b is Greater than $a"

fi

if [$a \< $b]

then

 echo "----------Lesser Results------------------"

 echo "$a is Lesser than $b"

else

 echo "----------Lesser Results------------------"

 echo "$b is Lesser than $a"

fi

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 55|Page

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 56|Page

LOGICAL OPERATORS (BOOLEAN OPERATORS)

S.N OPERATOR OPERATORS IN

SHELL

DESCRIPTION

1. Logical AND && Binary operator which returns

true if both the operands are

true otherwise returns false

value

2. Logical OR || Binary operator which returns

true if one of the operand or

both is true otherwise returns

false value

3. Not Equal to ! Unary operator returns true if

the operand is false and

returns true if the operand is

true

V. EXAMPLE OF LOGICAL AND OPERATOR

SOURCE CODE

echo "--"

echo "\tLogical AND Operator"

echo "--"

echo "Enter the number 1: "

read a

echo "Enter the number 2: "

read b

echo "Enter the number 3: "

read c

if [$a -gt $b] && [$a -gt $c]

then

 echo "$a is bigger than $b and $c"

elif [$b -gt $c]

then

 echo "$b is bigger than $a and $b"

else

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 57|Page

 echo "$c is bigger than $a and $b"

fi

OUTPUT

FILE TYPE OPERATORS

S.N OPERATOR DESCRIPTION

1. -f Returns true if exists and if it is a regular file

(.txt, .c. sh, etc,…)

2. -d Returns true if exists and if it is a directory

3. -e Returns true if exists

4. -z Returns true if file is empty (file has zero

length)

5. -r Returns true if exists and is readable mode

6. -w Returns true if exists and is writable mode

7. -x Returns true if exists and is executable mode

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 58|Page

VI. EXAMPLE OF FILE TEST OPERATORS

SOURCE CODE

echo "---"

echo "\tFile Testing Operator"

echo "---"

echo "Enter the file name : "

read fp

if [-e $fp]

then

 echo "Object Exists..."

 if [-f $fp]

 then

 echo "It is a regular file..."

 echo "Contents:"

 echo $(cat $fp)

 elif [-d $fp]

 then

 echo "It is a directory..."

 dpath=`pwd`/$fp

 echo $dpath

 echo "Contents of Directory: "

 for i in $(ls $dpath)

 do

 echo $i

 done

 else

 echo "It is a special file..."

 fi

else

 echo "Object does not exists..."

fi

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 59|Page

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 60|Page

DIRECTORIES

S.N OPERATOR DESCRIPTION

1. ls (OR) ls . Shows the list of files and folders in current

directory

2. ls .. Shows the list of files and folders in parent

directory

3. ls / Shows the list of files and folders in root

working directory

4. ls -l Shows the files and folders in long listing

format

5. ls -s Shows the size of files and folders in current

directory

VII. LISTING FILES AND FOLDERS IN ROOT DIRECTORY

SOURCE CODE

(test.sh)

echo "--"

echo "\tFiles and Folders in Root Directory"

echo "--"

for i in $(ls /)

do

 echo $i

done

Root Path: $ ls /

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 61|Page

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 62|Page

VIII. LISTING FILES AND FOLDERS IN PARENT DIRECTORY

SOURCE CODE

echo "--"

echo "\tFiles and Folders in Parent Directory"

echo "--"

for i in $(ls ..)

do

 echo $i

done

OUTPUT

IX. LISTING FILES AND FOLDERS IN CURRENT DIRECTORY

SOURCE CODE

echo "--"

echo "\tFiles and Folders in Current Directory"

echo "--"

for i in $(ls)

do

 echo $i

done

Path of Parent Directory: $ ls ..

Path of Current Directory: $ ls

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 63|Page

OUTPUT

LIST FILES IN LONG FORMAT

 The command ls -l provides the detailed format of showing the files and

folders in current file system.

1. Content Permissions

2. Number of links to the content

3. Owner of the content

4. Group onwer of the content

5. Size of the content (in bytes)

6. Last modified date / time

7. Name of the file / directory name

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 64|Page

Long Listing of Files and Folders

CONTENT PERMISSION

 In content permission, the column 1 indicates the file type. They are

 - means for regular file

 d means for directory

 b means for special block file

 c means for special character file

 In content permission, the next column indicates the file permissions

such as read, write and execute

 Read  represents the read mode which is code value 4

 Write  represents the write mode which is code value 2

 Execute  represents the execute mode which is code value 1.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 65|Page

SHELL FUNCTION

 Shell program supports the function which is used to implement the
variables as well as execute the linux commands.

Syntax1

Example

Syntax2

Example

CALLING FUNCTION

 Shell function can be called using its name only.

 The operation () should not be used while calling the function.

function <name>

{

 # user code

}

<function-name>()

{

 # user code

}

function show

{

 # user code

}

show()

{

 # user code

}

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 66|Page

Syntax

Example

I. EXAMPLE OF SHELL FUNCTION

SOURCE CODE

echo "--"

echo "\t\tShell Function"

echo "--"

disp()

{

 echo "Good Morning ..."

}

calling function

disp

OUTPUT

$ function-name

$ show

The operator symbol () is not allowed while

calling the shell function.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 67|Page

SHELL FUNCTION WITH ARGUMENTS

 Shell function supports the arguments

 The arguments are given after the function name while calling the
function

 Each argument is separated by space

 The positional parameters like $1, $2, etc… will receive the values of
function arguments inside the function definition

II. EXAMPLE OF SHELL FUNCTION WITH ARGUMENTS

SOURCE CODE

echo "--"

echo "\t\tShell Function with Arguments"

echo "--"

creating a shell function

disp()

{

 a=$1

 b=$2

 rs=`expr $a + $b`

 echo "Sum is: $rs"

}

calling function with arguments

disp 12 21

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 68|Page

SHELL FUNCTION WITH RETURN STATEMENTS

 Like c language, shell function returns the values

 The return keyword is used to return the values in the shell function

 The returned result of calling function can be obtained using the special
symbol $? (by default, the return values of the function will be stored to
the built-in variable $?)

NOTE

 It is an important to note that, the shell function will return a single value.

III. EXAMPLE OF SHELL FUNCTION WITH RETURN VALUE

SOURCE CODE

echo "---"

echo "\t\tShell Function with Return Value"

echo "---"

a=12

b=23

rs=0

shell function

disp()

{

 rs=`expr $a + $b`

return the variable

 return $rs

}

calling function

disp

get the return value from function using $?

k=$?

echo "Sum is: $k"

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 69|Page

OUTPUT

COMMAND SUBSTITUTION

 In shell, assigning the built-in command to a user defined variable is

called as command substitution

 This is done using the special symbol ̀ command-name` or $(command-

name)

Syntax1

Example

Syntax 2

Example

Variable-Name=`command-name`

files=`ls` # the output of ls command is stored to the

 variable called files.

dirpath=”test”

files=`ls $dirpath ` # the contents of test directory are stored

 to the variable called files

files=$(ls) # the output of ls command is stored to the

 variable called files.

Variable-Name=$(command-name)

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 70|Page

I. EXAMPLE OF COMMAND SUBSTITUTION

SOURCE CODE

echo "---"

echo "\tCommand Substitution"

echo "---"

date command Substitution

rs=`date`

k=$(date)

print the output of date command via variable

echo "Current Date: \n"$rs

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 71|Page

II. COMMAND SUBSTITUTION-FILE COPYING BETWEEN DIRECTORIES

SOURCE CODE

echo "---"

echo "\t\tCopying Files B/W Directories"

echo "---"

path of source directory

path="/home/runner/OS-Lab/d1"

k=$(ls $path)

src=`ls $path`

path of target directory

tar="/home/runner/OS-Lab/d5"

for loop

for i in $src

do

 cp $i $tar

 echo "$i is successfully copied to $tar/$i"

done

echo "---"

OUTPUT

RESULT

Thus the operators and shell functions of the shell programming have
been executed successfully.

Command Substitution using the

symbol ` `

Path of Source Directory (d1). Parent

Path can be get using pwd command.

Path of Target Directory (d5).

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 72|Page

EX.NO: 5 SHELL ARRAYS

AIM

 To practice the arrays in shell programming.

SHELL ARRAY

 Array is a set of elements which are having same type or different type

 It is an example of linear data structures (sequential data structure)

 It is accessed by the index number which starts from 0 to n-1

 It supports the storage, retrieval, insertion, deletion and updation

 In shell, the array can be created with help of the special operator
symbol () instead of square operator []

 Unlike other compiled languages c/c++/c#/java, the shell follows the
dynamic data typed system. So no need to mention the data type in the
creation of an array.

Syntax

Where,

 Element 1, Element 2, …Element n can be Same Type or Different

Type.

Example

Length

 Array length can be done by using the special symbol # followed by @
or * symbol along with array name

 It is very important to note that, the curly braces operators {} are used
for accessing the array in shell

Syntax

(OR)

User-defined-name = (Element 1 Element 2 …Element n)

arr=(12 34 59) // homogenous collection

arr=(“Sachin” 12.41 55 true) // heterogeneous

{#<array-name>[@]}

{#<array-name>[*]}

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 73|Page

Example

Accessing Individual array contents

 The contents of the array can have accessed by using its index location

Example

Printing Individual Element

 The individual element of an array can be displayed using the curly

braces {} along with array name

Syntax

Example

Accessing Entire array contents

 The entire array elements can be called using the star symbol * or @
with array name.

 It is an important to note that, if the index number is * or @, the whole
elements of the array are referenced.

Example

ls=(12 34 55 99)

len=${#ls[@]}

 (OR)

len=${#ls[*]}

ls[0]  12

ls[1]  32

${ls[*]}  contains the entire array elements

echo ${ls[*]}  show the array contents at the same time.

echo ${ls[1]} // display the second element

echo ${ls[3]} // display the fourth element

${arrayname[index-number]}

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 74|Page

OR

Commands to check the Shell Types

$ cat /etc/shells

I. EXAMPLE OF ARRAY CREATION FOR HOMOGENOUS TYPE

 (/home/runner/Latest-Shells-21/arr1.sh)

SOURCE CODE

echo "---"

echo "Shell Array for Same Type of Elements"

echo "---"

Array Creation

lb=(12 45 77 99 88)

print the contents of array at the same time

echo "Array Contents using name"

echo ${lb[*]}

print the length of the array

echo "Length of the Array: ${#lb[@]}"

echo "Array Contents using for loop"

echo "---"

Display the array contents at the same time

using the name.

Same type elements of array.

${ls[@]}  contains the entire array elements

echo ${ls[@]}  show the array contents at the same time.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 75|Page

print the contents of array

for i in ${lb[*]}

do

 echo $i

done

OUTPUT

II. EXAMPLE OF ARRAY CREATION FOR HETEROGENEOUS TYPE

(/home/runner/Latest-Shells-21/arr2.sh)

SOURCE CODE

echo "---"

echo "Shell Array for Different Type of Elements"

echo "---"

Array Creation

lb=("Shiva" 21 72.93 True)

print the contents of array at the same time

echo "Array Contents using name"

echo ${lb[*]}

print the length of the array

Display the array contents one by one

using for loop.

Display the array contents at the

same time using the name.

Different type elements of

array.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 76|Page

echo "Length of the Array: ${#lb[@]}"

echo "Array Contents using for loop"

echo "---"

print the contents of array

for i in ${lb[*]}

do

 echo $i

done

OUTPUT

III. INDEX BASED ARRAY CREATION FOR HETEROGENEOUS TYPE

(/home/runner/Latest-Shells-21/arr3.sh)

SOURCE CODE

echo "---"

echo "Array Creation using Index"

echo "---"

Empty array

ls=()

store the elements to array using index number

ls[0]=12

Display the array contents one by one

using for loop.

Empty array creation

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 77|Page

ls[1]=21

ls[2]='M'

ls[3]=True

ls[4]="Rohit"

print the contents of array at the same time

echo "Array Contents using name"

echo ${ls[*]}

print the length of the array

echo "Length of the Array: ${#ls[@]}"

echo "Array Contents using for loop"

echo "---"

print the contents of array

for i in ${ls[*]}

do

 echo $i

done

OUTPUT

Storing elements to array using

index number.

Printing the array length.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 78|Page

IV. DISPLAYING LINUX COMMANDS USING ARRAY

(/home/runner/Latest-Shells-21/arr4.sh)

SOURCE CODE

echo "---"

echo "Shell Array for Same Type of Elements"

echo "---"

Array Creation

lb=()

assigning linux commands to the each location of array

lb[0]=$(ls)

lb[1]=$(date)

lb[2]=`cal`

lb[3]=`cat /etc/shells`

print the length of the array

echo "Length of the Array: ${#lb[@]}"

echo "Array Contents using for loop"

echo "---"

print the contents of array

for i in ${lb[*]}

do

 echo $i

done

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 79|Page

DISPLAYING THE OUTPUT OF LINUX COMMANDS

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 80|Page

DISPLAYING THE OUTPUT OF LINUX COMMANDS – (CONTINUE)

RESULT

 Thus the arrays using shell programming have been executed

successfully.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 81|Page

EX.NO: 6 PROCESS SYSTEM CALLS – FORK, EXIT, WAIT

AIM

To practice the system calls such as fork, wait, exit using linux c

programming.

SYSTEM CALLS

 It is an interface between process and kernel

 It is way for programs to interact with OS

 Five different types of system calls are available. They are

1. Process Control

2. File Management

3. Device Management

4. Information Management

5. Communication

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 82|Page

1. Process Control

 This system calls perform the task of process creation, process

termination, etc.

Functions

 End and Abort

 Load and Execute

 Create Process and Terminate Process

 Wait and Signed Event

 Allocate and free memory

2. File Management

 It handles file manipulation jobs like creating a file, reading, and writing,

etc.

Functions

 Create a file

 Delete file

 Open and close file

 Read, write, and reposition

 Get and set file attributes

3. Device Management

 It performs the job of device manipulation like reading from device

buffers, writing into device buffers, etc.

Functions

 Request and release device

 Logically attach/ detach devices

 Get and Set device attributes

4. Information Management

 It handles information and its transfer between the OS and the user

program.

Functions

 Get or set time and date

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 83|Page

 Get process and device attributes

5. Communication

 These types of system calls are specially used for interprocess

communications.

Functions

 Create, delete communications connections

 Send, receive message

 Help OS to transfer status information

 Attach or detach remote devices

PROCESS CONTROL SYSTEM CALLS

 It deals with process creation, process termination, etc, …

Examples

S.N Linux Windows Description

1. fork() CreateProcess() Create a child process

2. exit() ExitProcess() Terminate the process

3. wait() WaitForSignalObject() Wait for the child process

termination

fork()

 It is an important system calls which is used to create a new process in

the OS

 The newly created process is called as child process and caller of the

child process is called as parent process

 It takes no arguments and returns the process ID

 It is called once but returns twice (once in parent and once in the child)

 The new process gets a copy of the current program, but new process id

(pid). The process id of the parent process (the process that called fork())

is registered as the new processes parent pid (ppid) to build a process

tree.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 84|Page

 It is an important to note that, Unix / Linux will make an exact copy of the

parent's address space and give it to the child. Therefore, the parent and

child processes have separate address spaces.

 It returns the following values:

 Negative  new process creation was unsuccessful

 Zero  returned to child process

 Positive  returned to parent (caller) process

Child Process

 The newly created process is called as child process

 It is identified by the return code is 0

Parent Process

 The caller of the newly created process is called as parent process

 It is identified by the return code is positive value

Formula

 Total number of processes (T) : 2n

 Total number of Child processes (C) : 2n-1

 Total number of Child processes (P) : T-C

NOTE

 After the fork(), both parent and child processes are running

simultaneously

 The newly created process is called as child process which is identified

by the return code is 0 and the caller of the child process is called as

parent process which is identified by positive value (>0)

 Program statements before fork() is common for both child and parent

processes but after fork() call, the rest of the program instructions will be

allocated separately for child and parent process

 Child and parent processes don’t share common address space. They

are having own memory address space. So if there are any changes in

child process won’t reflect the parent process. Similarly, if there are any

changes in parent processes won’t reflect the child process.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 85|Page

WHICH PROCESS RUNS FIRST (b/w parent and child process)

 It an important to note that, there is no rule about which process runs first

between parent and child processes.

 As soon as a process is ready for execution (i.e. the fork system call

returns), it may run according to the scheduling configuration (priority,

scheduler chosen, etc.).

 Depending on how the process is added to the scheduler, either process

may be scheduled first after returning from fork.

REQUIRED HEADER FILES

1. #include<stdio.h>

 This header file is used for printf(), scanf(), etc, …

2. #include<unistd.h>

 This header file is used for fork(), getpid(), getppid(), etc, …

3. #include<sys/types.h>

 This header file is used for pid_t, etc, …

4. #include<sys/wait.h>

 This header file is used for wait(), etc, …

5. #include<stdlib.h>

 This header file is used for exit(), etc, …

TOOLS SUPPORT

 Compiler : gcc compiler (gcc <filename>.c)

 Execution : ./a.out (assembly output)

 OS : Linux OS platform

 Terminal : Online linux terminal (www.replit.com)

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 86|Page

I. EXAMPLE OF SINGLE FORK

(fork1.c)

SOURCE CODE

#include<unistd.h>

#include<stdio.h>

int main()

{

 printf("---\n");

 printf("\tSimple Fork()\n");

 printf("---\n");

// calling fork()

 fork();

 printf("Hello World\n");

 return 0;

}

OUTPUT

Total Number of Processes are  2n

  21

 2

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 87|Page

Pictorial Representation

 When the child process is created, both the parent process and the child

process will point to the next instruction (same Program Counter) after

the fork().

 In this way the remaining instructions or C statements will be executed

the total number of process times, that is 2n times, where n is the number

of fork() system calls

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 88|Page

II. CALLING DOUBLE FORK

SOURCE CODE

#include<unistd.h>

#include<stdio.h>

int main()

{

 printf("--\n");

 printf("\tCalling Double Fork()\n");

 printf("--\n");

// calling double fork()

 fork();

 fork();

 printf("Good Morning\n");

 return 0;

}

OUTPUT

Total Number of Processes are  2n

  22

 4

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 89|Page

III. CALLING TRIPLE FORK

SOURCE CODE

#include<unistd.h>

#include<stdio.h>

int main()

{

 printf("--\n");

 printf("\tCalling Triple Fork()\n");

 printf("--\n");

// calling triple fork()

 fork();

 fork();

 fork();

 printf("Welcome to Chennai\n");

 return 0;

}

OUTPUT

Total Number of Processes are  2n

  23

 8

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 90|Page

IV. PRINT THE RETURNED VALUE OF CHILD AND PARENT PROCESSES

USING FORK

SOURCE CODE

#include<unistd.h>

#include<stdio.h>

#include<sys/types.h>

int main()

{

 pid_t id;

 printf("---\n");

 printf("\tReturn Code of Parent & Child\n");

 printf("---\n");

// calling fork()

 id=fork();

 if(id==0)

 {

 printf("Child Process is calling ...\n");

 printf("Returned Value of Child Process : %d\n",id);

 }

 else

 {

 printf("Parent Process is calling ...\n");

 printf("Returned Value of Parent Process : %d\n",id);

 }

 return 0;

}

This header supports the pid_t

Child Process: It is identified by 0

Parent Process: It is identified by >0

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 91|Page

OUTPUT

Usage of getpid() and getppid()

 Two major functions which are used to get the process ids. They are

1. getpid()

2. getppid()

1. getpid()

 It is a built-in function and available in #include<unistd.h> header file

 It is used to return the process ID of child process (newly created process)

 Return value: pid_t

2. getppid()

 It is a built-in function and available in #include<unistd.h> header file

 It is used to return the process ID of parent process (caller of the newly

created process)

 Return value: pid_t

pid_t

 It stands for process id type and built-in variable to store the process ids

of parent and child function

 It is the type of the process ID which returns an unsigned integer value.

 It is available in #include<sys/types.h>

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 92|Page

V. DISPLAY THE PROCESS ID (PID) OF PARENT AND CHILD

PROCESSES USING GETPID() AND GETPPID()

SOURCE CODE

#include<unistd.h>

#include<stdio.h>

#include <sys/types.h>

int main()

{

 int id;

 printf("---\n");

 printf("\tProcess ID of Parent & Child\n");

 printf("---\n");

// calling fork()

 id=fork();

 if(id==0)

 {

 printf("Child Process is calling ...\n");

 printf("Process ID (PID) of Child Process : %d\n",getpid());

 }

 else

 {

 printf("Parent Process is calling ...\n");

 printf("Process ID (PID) of Parent Process : %d\n",getppid());

 }

 return 0;

}

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 93|Page

OUTPUT

Wait()

 It is system call and available in #include<sys/wait.h> file

 It blocks the current process (calling process), until one of its child

processes terminate or a signal is received

 It takes one argument which is the address of an integer variable (stores

the information of the process) and returns the process ID (PID) of

completed child process

 Return type: pid_t

 If only one child process is terminated (finished its execution), then it

returns the process ID of the terminated child process

 If more than one child processes are terminated, then it returns process

ID of any terminated arbitrary child process.

The execution of wait() could have two possible situations.

1. If there are at least one child processes running when the call to wait() is

made, the caller will be blocked until one of its child processes exits. At

that moment, the caller resumes its execution.

2. If there is no child process running when the call to wait() is made, then

this wait() has no effect at all. It returns -1 immediately.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 94|Page

NOTABLE POINTS

 wait(NULL) will block the parent process until any of its children has

finished their execution (parent process will be blocked until child process

returns an exit status to the operating system which is then returned to

parent process)

 If child finishes before parent reaches wait(NULL) then it will read the exit

status, release the process entry in the process table and continue

execution until it finishes as well.

 Wait can be used to make the parent process wait for the child to

terminate (finish) but not the other way around

 Wait(NULL) simply making the parent wait for the child.

 On success, wait() returns the process ID of terminated child process

while on failure it returns -1

 Once child process finishes, parent resumes and prints the rest of the

statements of parent process

exit()

 It is system call and available in #include<stdlib> file

 It takes only one parameter which is exit status as a parameter

 It is used to close all files, sockets, frees all memory and then terminates

the process.

 The parameter 0 indicates that the termination is normal.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 95|Page

VI. EXAMPLE OF WAIT AND EXIT SYSTEM CALLS

SOURCE CODE

#include<stdio.h>

#include<sys/types.h>

#include<unistd.h>

#include<stdlib.h>

#include<sys/wait.h>

int main()

{

 pid_t pd;

 printf("---\n");

 printf("\twait() and exit()\n");

 printf("---\n");

// execution of fork() call

 if (fork()== 0)

 {

 printf("Child is calling...\n");

// normal termination

 exit(0);

 }

 else

 {

// get the PID of terminated child process

 pd = wait(NULL);

 printf("Parent is calling...\n");

// print the process IDs of parent and child processes

 printf("Parent PID\t: %d\n", getppid());

 printf("Child PID\t: %d\n", pd);

 }

 return 0;

}

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 96|Page

OUTPUT

VII. SUM OF NUMBERS IN ARRAY USING CHILD AND PARENT

PROCESS

Task

Write a linux c program to find the sum of the numbers in array in child process

and execute the parent process after the execution of child process using

system calls.

Used System calls:

 fork(), wait()

SOURCE CODE

#include<stdio.h>

#include<sys/types.h>

#include<unistd.h>

#include<stdlib.h>

#include<sys/wait.h>

int main()

{

 int i,a[]={1,5,7,8,9};

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 97|Page

 int s=0;

 printf("---\n");

 printf("\tSum of Numbers in Child and Execution of Parent after the

child\n");

 printf("---\n");

// create new process by fork and return the value in p

 int p=fork();

// if the returned value is negative value (unsuccessful status)

 if(p<0)

 {

 printf("Failed to create a new Process ...\n");

 exit(0);

 }

// if the returned value is equal to 0 (checking child process)

 else if(p==0)

 {

 printf("Child Process is calling...\n");

 for(i=0;i<5;i++)

 {

 s=s+a[i];

 }

 printf("The result is: %d\n",s);

 printf("Child Process is completed...\n");

 }

// if the returned value is positive (checking parent process)

 else

 {

 wait(NULL);

 printf("Parent Process is calling after the Child Process ...\n");

 }

 return 0;

}

Wait() System call: wait parent until

child has to terminate.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 98|Page

OUTPUT

RESULT

 Thus the types of process system calls have been executed

successfully.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 99|Page

EX.NO: 7 INTERPROCESS COMMUNICATION USING PIPE

AIM

To work with interprocess communication using pipe in linux c

programming.

IPC

 IPC stands for Inter Process Communication

 It is one of the mechanism provided by the OS which allows processes
to communicate with each other and synchronize their action

 Examples: Message Queue, Signals, Shared Memory, Pipes, etc,…

EXAMPLES TECHNIQUES OF IPC

 Shared Files

 Shared Memory

 Pipes (Named and Unnamed Pipes)

 Message Queues

 Sockets

 Signals

PIPES

 Pipe provides the communication between processes on same computer

or different computer or across the network

 It is classified as two types. They are

1. Unnamed Pipe (PIPE)

2. Named Pipe (FIFO)

Process (P1) Process (P2) Process

(Pn)
…

IPC

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 100|Page

Pipe Symbol

 The output of one command (read) can be given as the input of next

command (write) that is called as pipe command. In linux terminal, it is

indicated the symbol |

 Two processes can be joined or communicated with help of the pipe

symbol on the shell terminal

 Both processes P1, P2 are executed simultaneously and P1 will pass

data / message to Process P2 as it executes.

Example of Pipe Symbol in Linux Terminal

 Here the output of ls command is given as an input to the wc -l command

using pipe symbol (|).

 Hence, both ls command (Process P1) and wc –l command (Process P2)

can be communicated through pipe symbol (|).

 Using pipe symbol, ‘n’ of processes or commands can be communicated.

Process 1 (P1) Process 2

(P2)

pd[0]

pd[1]

pd[0]

pd[1]

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 101|Page

I. IPC USING PIPE

PIPE SYSTEM CALL

 In linux c, the pipe system call is created by using the built-in function

called pipe()

Example

 Here, pipe system call accepts only one argument, which is an integer
array of two pipe descriptors.

 pd[0] is used for reading data / message from the pipe and pd[1] is used
for writing data / message to the pipe.

Pipe (Unnamed Pipe or Anonymous Pipe)

 In linux, if the pipe has no name then it is called as unnamed pipe or
anonymous pipe (gives communication between parent and child
processes)

 It is a communication medium between two or more related or interrelated
processes

 It is mainly used for interprocess communication. It has two ends. They
are:

1. First end is fd[0] which is used for reading mode

2. Second end is fd[1] which is used for writing mode

 It is used for transferring data between two processes / commands /
programs

 It acts like queue data structure. We can write 512 bytes at the same time
but we can read ONLY ONE BYTE at the same time.

 It is an important to note that, pipe is an uni-directional (half duplex or
one-way communication) that is either from left to right or right to left

 It is an important to note that, whatever is written on one end (Ex. write
end) might visible on other end (Ex. read end)

Return Value of Pipe

 It returns 0 if successful otherwise it returns -1

 Return type: int

int pipe(int pd[2]);

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 102|Page

Required Header File

OPERATIONS OF PIPE

 One Way Communication between processes

 One pipe system call is required

 Two Way Communication between processes

 Two pipe system calls are required

 By default, it is a half-duplex method. So the first process will

communicate with second process or second process will

communicate with first process. However, in order to achieve a

full-duplex, another pipe is needed.

BUILT-IN METHODS OF PIPE

1. write(pipe-descriptor[1], void * message, size_t count)

 This method is used to write the string message using the pipe end [1]

 It takes three arguments such as descriptor, message and size

 1st argument is pipe descriptor

 2nd argument is message which is string type

 3rd argument is count which is unsigned int type.

 This method will return the number of bytes written on success case and

will return -1 if the case is failure.

 Return type: ssize_t

2. read(pipe-descriptor[0], void * buffer, size_t count)

 This method is used to read the string message using the pipe end [0]

 It takes three arguments such as descriptor, message and size

 1st argument is pipe descriptor

 2nd argument is message which is string type

#include<unistd.h>

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 103|Page

 3rd argument is count which is unsigned int type.

 This method will return the number of bytes read on success case and

will return -1 if the case is failure.

 Return type: ssize_t

3. close(pipe-descriptor)

 This method is used to close the pipe if pipe is already opened

 It takes only one argument which is the integer value of pipe descriptor

 It will return 0 on success case and -1 on failure case.

 Return type: int

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 104|Page

I. SENDING AND RECEIVING STATIC MESSAGES BETWEEN TWO

PROCESSES USING PIPE

(/home/runner/Latest-Shells-21/pipeex1.c)

SOURCE CODE

#include<string.h>

#include<fcntl.h>

#include <unistd.h>

#include<stdio.h>

#include<stdlib.h>

int main()

{

 int r;

// pipe descriptors

 int p[2];

 printf("---\n");

 printf("\tSending and Receiving Static Messages-Pipe\n");

 printf("---\n");

// Text Messages (fixed messages)

 char *sms1="Good Morning\n";

 char *sms2="Hello World\n";

 unsigned int s=strlen(sms1);

 char buf[1024];

// create unnamed pipe using pipe system call

 r=pipe(p);

 if(r<0)

 {

 printf("Failed to created unnamed pipe...\n");

 exit(1);

 }

// send messages to another process

 write(p[1],sms1,strlen(sms1));

 write(p[1],sms2,strlen(sms1));

 printf("Two Messages are sent successfully...(Process 1)\n");

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 105|Page

 printf("---\n");

 printf("Message from Unnamed Pipe: (Process 2)\n");

// read messages from the pipe (other end) using single buffer

 read(p[0],buf,sizeof(buf));

 printf("%s",buf);

 return 99;

}

OUTPUT

II. FINDING PRIME NUMBER USING PIPE

(Static Input)

(/home/runner/Latest-Shells-21/pipeex3.c)

SOURCE CODE

#include<fcntl.h>

#include <unistd.h>

#include<stdio.h>

#include<stdlib.h>

// function returns string as a result

char * findprime(int n)

{

 int c=0;

 for(int i=0;i<n;i++)

 {

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 106|Page

 if(n%(i+1)==0)

 c++;

 }

 if(c==2)

 return "The Given Number is a prime...\n";

 else

 return "The Given Number is NOT a prime...\n";

}

// main function

int main()

{

 int r,ele;

// pipe descriptors

 int p[2];

 printf("---\n");

 printf("\tFinding Prime Number-Pipe\n");

 printf("---\n");

 char buf[1024];

// create unnamed pipe using pipe system call

 r=pipe(p);

 if(r<0)

 {

 printf("Failed to created unnamed pipe...\n");

 exit(1);

 }

 char *msg="18";

// send single message (string type) to another process (one end)

 write(p[1],msg,sizeof(msg));

 printf("One Message is sent successfully...(Process 1)\n");

 printf("---\n");

 printf("Message from Unnamed Pipe: (Process 2)\n");

// read message from pipe (other end)

 read(p[0],buf,sizeof(msg));

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 107|Page

 printf("Received Data: %s\n",buf);

// convert received string data to integer

 int num=atoi(buf);

// pass integer number to function for the prime number detection

 char *rs=findprime(num);

// print the result

 printf("%s\n",rs);

 return 99;

}

IF INPUT IS 18

IF INPUT IS 31

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 108|Page

III. FINDING PRIME NUMBER USING PIPE

(Dynamic Input)

(/home/runner/Latest-Shells-21/pipeex4.c)

SOURCE CODE

#include<fcntl.h>

#include <unistd.h>

#include<stdio.h>

#include<stdlib.h>

char * findprime(int n)

{

 int c=0;

 for(int i=0;i<n;i++)

 {

 if(n%(i+1)==0)

 {

 c++;

 }

 }

 if(c==2)

 return "The Given Number is a prime...\n";

 else

 return "The Given Number is NOT a prime...\n";

}

int main()

{

 int r;

// array of pipe descriptors for reading and writing

 int p[2];

 printf("---\n");

 printf("\tFinding Prime Number-Pipe\n");

 printf("---\n");

 char buf[1024];

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 109|Page

// create unnamed pipe using pipe system call

 r=pipe(p);

 if(r<0)

 {

 printf("Failed to created unnamed pipe...\n");

 exit(1);

 }

 int ele;

 printf("Enter a number: ");

// read a dynamic input which is an integer type

 scanf("%d",&ele);

// create a string and allocate a dynamic memory for this type

 char *msg=(char *)malloc(sizeof(char *));

// convert integer number to string using sprintf(char*, type, base) method

 sprintf(msg,"%d",ele);

// send single message to another process (one end)

 write(p[1],msg,sizeof(msg));

 printf("One Message is sent successfully...(Process 1)\n");

 printf("---\n");

 printf("Message from Unnamed Pipe: (Process 2)\n");

// read message from sender using read() method (other end)

 read(p[0],buf,sizeof(msg));

 printf("Received Data: %s\n",buf);

// convert received string data to integer

 int num=atoi(buf);

// pass integer number to function for the prime number detection

 char *rs=findprime(num);

// display the results

 printf("%s\n",rs);

 return 99;

}

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 110|Page

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 111|Page

IV. SENDING AND RECEIVING DYNAMIC MESSAGES BETWEEN TWO

PROCESSES USING PIPE

(/home/runner/Latest-Shells-21/test2.c)

SOURCE CODE

#include<string.h>

#include<fcntl.h>

#include <unistd.h>

#include<stdio.h>

#include<stdlib.h>

int main()

{

 int r,nl;

 static int c=0;

// dynamic memory for sender

 char *msg=(char *)malloc(sizeof(char *));

// fixed memory for receiver memory (max.memory)

 char bf[1024];

// pipe descriptors for reading and writing data

 int p[2];

 printf("--\n");

 printf("\tSending & Receiving Dynamic Messages using Pipe\n");

 printf("--\n");

// create unnamed pipe using pipe system call

 r=pipe(p);

 if(r<0)

 {

 printf("Failed to created unnamed pipe...\n");

 exit(1);

 }

 printf("Enter the number of messages to send: ");

 scanf("%d",&nl);

 printf("Enter the messages:\n");

 for(int i=0;i<nl;i++)

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 112|Page

 {

 printf("Message #%d: \n",(i+1));

 scanf("%s",msg);

 // write message to process 2

 write(p[1],msg,50);

// count the length of the message

 s+=strlen(msg);

 printf("\tOne SMS is sent\n");

 printf("\tSMS Length: %d\n",(int)strlen(msg));

// increment the SMS count by the variable c with 1

 c++;

 }

 printf("%d Messages are Sent Successfully\n",c);

 printf("Message from Unnamed Pipe:\n");

 printf("Process 2:\n");

 printf("---\n");

 for(int i=0;i<nl;i++)

 {

 read(p[0],bf,50);

 printf("%s\n",bf);

 }

 return 99;

}

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 113|Page

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 114|Page

V. PARENT AND CHILD PROCESS COMMUNICATION (IPC) USING PIPE

(/home/runner/Latest-Shells-21/ipcpipe.c)

 Number of used Pipes : 1

 Number of child processes : 1

 Number of parent processes : 1

 Major system calls used : pipe(), fork()

 Types of Pipes : Unnamed Pipe()

 Type of Communication : One way

SOURCE CODE

#include<fcntl.h>

#include <unistd.h>

#include<stdio.h>

#include<stdlib.h>

#include<sys/wait.h>

int main()

{

 int r;

// pipe descriptors for read and write

 int p[2];

 printf("---\n");

 printf("\tIPC-Parent and Child using Pipe (One Way)\n");

 printf("---\n");

// variables declarations

 char *sms=(char *)malloc(sizeof(char *));

 char buf[1024];

// create unnamed pipe using pipe system call

 r=pipe(p);

 if(r<0)

 {

 printf("Failed to created unnamed pipe...\n");

 exit(1);

 }

// call fork() to create parent and child processes

 int f=fork();

 if(f<0)

 {

 printf("Error in creating the processes...\n");

 exit(0);

 }

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 115|Page

// child process

 else if(f==0)

 {

 printf("Child Process (P1)\n");

 printf("Enter the message to send (50 characters maximum): ");

 fgets(sms,50,stdin);

 // send message from child to parent using pipe

 write(p[1],sms,50);

 }

// parent process

 else

 {

 wait(NULL);

 printf("---\n");

 printf("Parent Process (P2)\n");

 // receive message from child via pipe

 read(p[0],buf,50);

 printf("Received Message:\n");

 printf("%s\n",buf);

 }

 return 99;

}

OUTPUT

.

RESULT

 Thus the interprocess communication using pipe has been executed

successfully.

It is indicated by keyboard input.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 116|Page

EX.NO: 8 INTERPROCESS COMMUNICATION USING NAMED

PIPE

AIM

To work with interprocess communication using named pipe in linux c

programming.

IPC USING NAMED PIPE (FIFO)

 FIFO stands for First in First Out

 A special kind of the file on the local storage that allows two or more
number of processes to communicate with each other

 Named IPC object which provides communication between two unrelated
processes

 Unlike pipe, it has name (identified by the unique name)

 Unlike pipe, it is a full duplex method which means that first process can
communicate with second process and second process can
communicate with first process.

DIFFERENCE BETWEEN PIPE AND FIFO

S.N FEATURES PIPE (Unnamed Pipe) FIFO (Named Pipe)

1. Description It has no name

(Unnamed IPC object)

It has a name (Named

IPC object)

2. Creation It is created by the

system call pipe()

It is created by the

method mkfifo() or

open()

3. Existence It does not exist in the

file systems

It exists in the file

system

4. Nature By default, it is an

unidirectional

It is bidirectional, same

FIFO can be used for

reading and writing at

the same time

5. Read & Write Here reader and writer

operations are done at

the same time

Here, it does not require

that both read and write

operations to happen at

the same time.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 117|Page

6. Processes Here data transfer takes

place between parent

and child process.

It has multiple

processes

communicating through

it, like multiple client

server application

7. Communication Here communication is

among the process

having related process

In FIFO, it is not

necessary for the

process having the

related process

(unrelated process)

8. Support Pipe is local to the

system and can’t be

used for the

communication across

the network

It is capable of

communicating across

different computers and

network.

NOTE

 Neither pipes nor FIFO allow file positioning. Both reading and writing

operations happen sequentially that is reading from the beginning of the

file and writing at the end of the file.

Required Header File

CAPACITY OF FIFO

 It has multiple readers or multiple writers

 Bytes from each writer are written automatically up to a maximum size of

PIPE_BUF (4KB on Linux OS)

#include<sys/stat.h> // used for creating FIFO i.e. mkfifo()

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 118|Page

BUILT-IN METHODS OF NAMED PIPE (FIFO)

1. mkfifo(const char *pathname, mode_t mode)

 It is used to create a FIFO file

 It takes two arguments. They are

 First argument is pathname of the newly created FIFO file which is

string type (identified by char *)

 Second argument is mode of the FIFO’s permissions.

 Return type: int

2. open(fpath, mode, permission)

 It is used to create a named pipe (FIFO)

 It takes two arguments. First argument is file name and second argument

is mode. The mode can be

 O_CREAT (create mode)

 O_WRONLY (write mode only)

 O_RDONLY (read mode only)

 O_RDWR (read and write support)

 Return type: int

3. write(int file descriptor, void * message, size_t size)

 It is used to write / send the data from one end to another end

 It takes three arguments. They are

1. First argument is the file object

2. Second argument is data / message

3. Third argument is the size of the data

 Return type: ssize_t

4. read(int file descriptor, void * message, size_t size)

 It is used to read / receive the data from named pipe

 It takes three arguments. They are

1. First argument is the file object

2. Second argument is data / message

3. Third argument is the size of the data

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 119|Page

 Return type: ssize_t

5. close(file descriptor)

 It is used to close the file descriptor if it is already opened

 It takes only one argument which is the file descriptor

 Return type: int

I. EXAMPLE OF IPC USING FIFO (NAMED PIPE)

(/home/runner/Latest-Shells-21/fifo1.c)

System Calls : File system calls

Type of Pipe : FIFO (Named Pipe)

Type of Communication : One way

SOURCE CODE

#include <stdio.h>

#include<sys/stat.h>

#include<string.h>

#include<fcntl.h>

#include <unistd.h>

// global variables

char m1[]="Hello World.";

char m2[]="Good Morning.";

char m3[]="Welcome to Chennai.\n";

void sendMessage()

{

 int fd;

// create new file (FIFO) for create and write mode with necessary permission

 fd=open("sms.txt",O_CREAT| O_WRONLY,0777);

// write the three messages to named pipe

 write(fd,m1,strlen(m1));

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 120|Page

 write(fd,m2,strlen(m2));

 write(fd,m3,strlen(m3));

 printf("Three Messages are successfully sent to named pipe...\n") ;

// close the file descriptor

 close(fd);

}

void receiveMessage()

{

 int fp;

 char buf1[100],buf2[100],buf3[100];

// open same file (FIFO) for read mode

 fp=open("sms.txt",O_RDONLY);

// read three messages from named pipe

 read(fp,buf1,strlen(m1));

 read(fp,buf2,strlen(m2));

 read(fp,buf3,strlen(m3));

 printf("Messages from FIFO:\n");

 printf("--\n");

 printf("\t%s\n",buf1);

 printf("\t%s\n",buf2);

 printf("\t%s\n",buf3);

// close the file descriptor

 close(fp);

}

int main()

{

 printf("--\n");

 printf("\t\tIPC using FIFO (Named Pipe)\n");

 printf("--\n");

 sendMessage();

Same FIFO file can be used for

reading mode.

It is better to use length of sender’s

message in receiver side

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 121|Page

 receiveMessage();

 return 99;

}

OUTPUT

RESULT

 Thus the interprocess communication using named pipe has been

executed successfully.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 122|Page

EX.NO: 9 MULTITHREADING USING PYTHON

AIM

To practice the multithreading programming using python language.

THREADING

 Thread is a path of the execution within a process.

TASK BASED TYPES

1. Single Threading

2. Multithreading

DIFFERENCE BETWEEN SINGLE THREAD AND MULTIPLE THREADS

S.N SINGLE THREAD MULTITHREADING

1. Performs single task Performs multitasking. Doing more

than one job at the same time

2. It consists of only one thread It consists of several threads

3. It is used for experimental

purpose

It is used for larger tasks

LIFE CYCLE OF THREADS

 Thread has five life cycles. It is always live in any of the state.

1. New born state (New state)

2. Runnable state

3. Running state (execution state)

4. Blocked state

5. Dead state (End state)

BUILT-IN METHODS

1. start()

 This is runnable state (waiting for the execution)

 This is method is used to start the thread

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 123|Page

 Return type : nothing

2. threading.currentThread().getName()

 This method is used to display the name of currently executing or

running thread

 Return type : String

Thread Creation

 Thread is created by using the super class Thread

Thread(name=<user-defined-name, target=<function-name>,)

 It is a built-in class which is used to create a new thread object

 It takes two or more arguments

 First argument is name of thread. It can be any name set by the user. It

is optional argument

 Second argument is target which is used to call the user defined

function

Required Module

threading

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 124|Page

I. EXAMPLE OF SINGLE THREAD

 Tools used : VSC Editor

 Platform OS : Windows 10

 Language : Python 3

SOURCE CODE

from threading import *

user defined function

def welcome():

 print("Hello World...")

print("--")

print("\tSingle Thread")

print("--")

creating object for single thread

t1=Thread(target=welcome, name="Thread 1")

start the thread by calling start method

t1.start()

OUTPUT

Runnable state

Newborn state

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 125|Page

Pictorial Diagram

MULTITHREADING

 Process of executing more than one thread at the same time (Execution
of multiple threads simultaneously)

 It is an important to note that, we can’t predict which thread will run first.

 By all the threads will be running in parallel at the same time.

 It is an important to note that, the main or current thread can randomly
start any thread from the list of threads.

II. EXAMPLE OF MULTITHREADING

(Asynchronous Processes)

 Tools used : VSC Editor

 Platform OS : Windows 10

 Language : Python 3

SOURCE CODE

from threading import *

user defined function 1

def m1():

 for i in range(3):

 print("Good Morning...")

user defined function 2

def m2():

Current Thread (Main Thread)

Sub Thread

t1

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 126|Page

 for i in range(3):

 print("Good Evening...")

user defined function 3

def m3():

 for i in range(3):

 print("Good Night...")

print("--")

print("\tMultithreading")

print("--")

creating objects for multiple threads

t1=Thread(target=m1,name="Morning")

t2=Thread(target=m2,name="Evening")

t3=Thread(target=m3,name="Night")

start the threads by calling start method

t1.start()

t2.start()

t3.start()

Pictorial Diagram

Current Thread (Main Thread)

Sub Thread

t1

Sub Thread

t2

Sub Thread

t3

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 127|Page

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 128|Page

III. EXAMPLE OF MULTITHREADING

(Synchronous Processes using join() method)

 Tools used : VSC Editor

 Platform OS : Windows 10

 Language : Python 3

Existing Issues

 By default, the threads are running parallel in multithreading

 In the execution of multithreading using asynchronous methods, the
threads will be running in parallel. That’s why the output came
differently in the previous example.

 So in order to execute thread one by one (sequential order) during the
multithreading, the join method will be used.

SOURCE CODE

from threading import *

user defined function 1

def m1():

 for i in range(3):

 print("Good Morning...")

user defined function 2

def m2():

 for i in range(3):

 print("Good Evening...")

user defined function 3

def m3():

 for i in range(3):

 print("Good Night...")

print("--")

print("\tMultithreading")

print("--")

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 129|Page

creating objects for multiple threads

t1=Thread(target=m1,name="Morning")

t2=Thread(target=m2,name="Evening")

t3=Thread(target=m3,name="Night")

start thread 1

t1.start()

wait until thread 1 is finished (main and sub threads t2, t3 should wait)

t1.join()

start thread 2 after thread 1

t2.start()

wait until thread 2 is finished (main and sub threads t1, t3 should wait)

t2.join()

start thread 3 after thread 2

t3.start()

wait until thread 3 is finished (main and sub threads t1, t2 should wait)

t3.join()

end of the main thread

print("End of the main thread...")

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 130|Page

OUTPUT

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 131|Page

IV. DETECTION OF CURRENTLY EXECUTING THREAD

 Tools used : VSC Editor

 Platform OS : Windows 10

 Language : Python 3

SOURCE CODE

from threading import *

import threading

user defined function 1

def m1():

 tname=threading.currentThread().getName()

 print("Current Thread\t: ",tname)

 print("Good Morning...")

user defined function 2

def m2():

 tname=threading.currentThread().getName()

 print("Current Thread\t: ",tname)

 print("Good Evening...")

user defined function 3

def m3():

 tname=threading.currentThread().getName()

 print("Current Thread\t: ",tname)

 print("Good Night...")

main thread

print("---")

print("\tFinding Current Thread - Multithreading")

print("---")

creating objects for multiple threads

t1=Thread(target=m1,name="Morning")

t2=Thread(target=m2,name="Evening")

t3=Thread(target=m3,name="Night")

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 132|Page

start threads

t1.start()

t2.start()

t3.start()

end of the main thread

print("End of the main thread...")

OUTPUT

GENERAL TYPES OF THREAD

 Like java, python supports two types of threads. They are

1. Daemon thread

2. Non daemon thread (User Thread)

1. Daemon Thread

 If a thread is running in background mode, then it is called as daemon
thread

 It has low priority level than user thread

 This is created by adding the boolean value to the daemon argument of
the Thread class.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 133|Page

2. Non Daemon Thread

 If a thread is running in foreground mode, then it is called as non
daemon thread (user thread)

 It has high priority level than daemon thread

 This is created by the thread class.

DIFFERENCE BETWEEN DAEMON THREAD AND NON DAEMON

THREAD

S.N DAEMON THREAD NON DAEMON THREAD

1. It is always runs in

background mode

It is always runs in foreground mode

2. Main program does not wait

for daemon thread to finish

its task

Here main program waits for user

threads have to terminate

3. It has low priority It has high priority

4. It is not used for important

task. It is generally used for

some background tasks

which are not important

Any important task is done by the user

thread.

5. It is created by the Python

Virtual Machine (PVM)

It is created by the application or

program.

6. If all the threads are finished

their execution, the PVM will

force the daemon threads to

finish their execution.

PVM won’t force the user threads for

termination. So it waits for user threads

to terminate themselves.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 134|Page

I. EXAMPLE OF DAEMON THREAD

 Tools used : VSC Editor

 Platform OS : Windows 10

 Language : Python 3

SOURCE CODE

from threading import *

from time import sleep

user defined function 1

def m1():

 for i in range(3):

 print("Good Morning...")

 sleep(2)

user defined function 2

def m2():

 for i in range(3):

 print("Good Evening...")

user defined function 3

def m3():

 for i in range(3):

 print("Good Night...")

print("--")

print("\tDaemon Thread")

print("--")

creating objects for multiple threads

convert thread t1 to daemon thread by setting the boolean true to the

daemon argument of thread class

t1=Thread(target=m1,name="Morning", daemon=True)

non daemon threads

t2=Thread(target=m2,name="Evening")

t3=Thread(target=m3,name="Night")

Convert user thread to non-

daemon thread.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 135|Page

start the thread by calling start method

t1.start()

t2.start()

t3.start()

OUTPUT

NOTE

 In the above output screenshot, the daemon thread t1  Good Morning
is still running in the background mode.

 Eventhough all threads (including main thread) are terminated, the
daemon thread is still aliving and running in the background.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 136|Page

II. EXAMPLE OF NON DAEMON THREAD

 Tools used : VSC Editor

 Platform OS : Windows 10

 Language : Python 3

SOURCE CODE

from threading import *

from time import sleep

user defined function 1

def m1():

 for i in range(3):

 print("Good Morning...")

 sleep(2)

user defined function 2

def m2():

 for i in range(3):

 print("Good Evening...")

user defined function 3

def m3():

 for i in range(3):

 print("Good Night...")

print("--")

print("\tNon Daemon Thread(User Threads)")

print("--")

creating objects for multiple threads

Non Daemon Threads

t1=Thread(target=m1,name="Morning")

t2=Thread(target=m2,name="Evening")

t3=Thread(target=m3,name="Night")

start the threads by calling start method

t1.start()

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 137|Page

t2.start()

t3.start()

OUTPUT

RESULT

 Thus the multithreading programming using python has been executed

successfully.

In the previous example, main thread and user threads

are terminated. But still daemon thread t1 Good

Morning is running in background jobs.

Here, main thread and user threads are terminated. No

threads are running in background.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 138|Page

EX.NO: 10 FILE ALLOCATION STRATEGIES

AIM

To practice the file allocation strategy in linux programming.

FILE ALLOCATION METHODS

 It defines, how the files are stored in the disk blocks.

 It supports three methods. They are

1. Sequential File Allocation (Contiguous Allocation)

2. Indexed File Allocation

3. Linked File Allocation

BENEFITS

 Efficient disk space utilization

 Fast access to the file blocks

1. SEQUENTIAL FILE ALLOCATION (CONTIGUOUS ALLOCATION)

 Process of allocating resources to the contiguous blocks are called as

sequential file allocation

 Both sequential and direct accesses are supported by this method.

 The directory entry for a file with contiguous allocation contains

 Address of starting block

 Length of the allocated portion.

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 139|Page

Example 1

Example 2

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 140|Page

I. EXAMPLE OF SEQUENTIAL ALLOCATION METHOD

SOURCE CODE

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#define BLOCKSIZE 50

int b[BLOCKSIZE+1];

int number,length;

void seq_fileallocation()

{

 printf("Enter the block number: ");

 scanf("%d",&number);

// check for invalid number

 if(number>BLOCKSIZE)

 {

 printf("Invalid Block Number.\nPlease Enter the block number in the

range between 1 to 50\n");

 }

 else

 {

// check the slot is free or not

 if(b[number]==0)

 {

 printf("Enter the number of lengths for the block %d: ", number);

 scanf("%d",&length);

 int c=0;

// increment the counter for the blocks which are given by the user

 for(int i=number;i<number+length;i++)

 {

 if(b[i]==0)

 {

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 141|Page

 c++;

 }

 }

 // if counter equals to exact length, then slot should be free

 if(c==length)

 {

 // allocate file / block for the user request

 for(int i=number;i<number+length;i++)

 {

 b[i]=1;

 printf("block %d is allocated ...\n",i);

 }

 printf("File is allocated successfully for the block %d\n",number);

 }

 else if((number+length)>BLOCKSIZE)

 {

 printf("File lengths are too out of range than MAX Capacity of Block

%d...\n",BLOCKSIZE);

 }

 else

 {

 printf("File lengths are not free for the given block\n");

 }

 }

 else

 {

 printf("File / Block is already Allocated\nPlease try some block

%d\n",number);

 }

 }

}

// print the contents of table

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 142|Page

void disp()

{

 for(int i=1;i<BLOCKSIZE+1;i++)

 {

 printf(" %d",b[i]);

 if(i%8==0)

 printf("\n");

 }

 printf("\n");

}

int main()

{

// allot the inputs for the blocks

 for(int i=1;i<BLOCKSIZE+1;i++)

 {

 b[i]=0;

 }

 printf("Initial Block Table\n");

 disp();

 char ch[150];

 while(5)

 {

 printf("---------------------------------------\n");

 printf("\tSequential File Allocation\n");

 printf("---------------------------------------\n");

 printf("Before File Allocation, Table Contents:\n");

 disp();

 seq_fileallocation();

 printf("After File Allocation, Table Contents:\n");

 disp();

 printf("Do you want to continue: Press Yes / No : ");

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 143|Page

 scanf("%s",ch);

 if(strcmp(ch, "yes")==0||strcmp(ch, "Yes")==0||strcmp(ch, "YES")==0)

 continue;

 else

 exit(1);

 }

}

Allocation for Block Number 12 and its Lengths 5

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 144|Page

Allocation for Block Number 3 and its Lengths 7 after that checking

block number 9

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 145|Page

Allocation for Block Number 49 and its Lengths 5

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 146|Page

Allocation for Block Number 49 and its Lengths 5 (-Continue) after that

checking block number 50

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 147|Page

2. INDEXED AL FILE ALLOCATION

 Unlike sequential file allocation, this method uses an additional block

called as the index block which is used to store all the disk pointers

 For each file, there is an individual index block.

 In the index block, the ith entry holds the disk address of the ith file

block.

 It is an important to note that, indexed block does not hold the file data,

but it holds the pointers to all the disk blocks allotted to the particular file.

 The directory entry contains the address of the index block as shown in

the below image:

PICTORIAL REPRESENTATION

Directory Entry

File Index Block

bus 11

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 148|Page

II. EXAMPLE OF INDEXED ALLOCATION METHOD

SOURCE CODE

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#define BLOCKSIZE 50

int b[BLOCKSIZE+1], ib[BLOCKSIZE+1];

int number,length;

void indexed_allocation()

{

 printf("Enter the index block number: ");

 scanf("%d",&number);

// check for invalid number

 if(number>BLOCKSIZE)

 {

 printf("Invalid index Block Number.\nPlease Enter the index block number

in the range between 1 to 50\n");

 }

 else

 {

// check the slot is free or not

 if(b[number]==0)

 {

 printf("Enter the number of files for the block %d: ", number);

 scanf("%d",&length);

 printf("Enter the blocks:\n");

 for(int i=0;i<length;i++)

 {

 printf("Files #%d: ",(i+1));

 scanf("%d", &ib[i]);

 }

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 149|Page

 int c=0;

// increment the counter for the blocks which are given by the user

 for(int i=0;i<length;i++)

 {

 if(b[ib[i]]>BLOCKSIZE)

 {

 printf("Index Block is Out of Range.\nPlease enter the blocks in

the range between 1-50\n");

 break;

 }

 else if(b[ib[i]]==0)

 {

 c++;

 }

 }

 // if counter equals to exact length, then slot should be free

 if(c==length)

 {

 // allocate file / block for the user request

 for(int i=0;i<length;i++)

 {

 b[ib[i]]=1;

 printf("Index block %d is allocated ...\n",ib[i]);

 }

 printf("File is allocated successfully for the block %d\n",number);

 }

// if the submitted index block is greater than MAXIMUM give message

 else

 {

 printf("File lengths are not free for the given block\n");

 }

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 150|Page

 }

 else

 {

 printf("File / Block is already Allocated\nPlease try some block");

 }

 }

}

// print the contents of table

void disp()

{

 for(int i=1;i<BLOCKSIZE+1;i++)

 {

 printf(" %d",b[i]);

 if(i%8==0)

 printf("\n");

 }

 printf("\n");

}

int main()

{

// allot the inputs for the blocks

 for(int i=1;i<BLOCKSIZE+1;i++)

 {

 b[i]=0;

 }

 printf("Initial Block Table\n");

 disp();

 char ch[150];

 while(5)

 {

 printf("---------------------------------------\n");

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 151|Page

 printf("\tIndexed File Allocation\n");

 printf("---------------------------------------\n");

 printf("Before File Allocation, Table Contents:\n");

 disp();

 indexed_allocation();

 printf("After File Allocation, Table Contents:\n");

 disp();

 printf("Do you want to continue: Press Yes / No : ");

 scanf("%s",ch);

 if(strcmp(ch, "yes")==0||strcmp(ch, "Yes")==0||strcmp(ch, "YES")==0)

 continue;

 else

 exit(1);

 }

}

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 152|Page

ALLOCATION OF INDEX BLOCK 5

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 153|Page

ALLOCATION OF INDEX BLOCK 5 – (Continue)

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 154|Page

ALLOCATION OF INDEX BLOCK 35

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 155|Page

CHECKING ALREADY ALLOCATED INDEX BLOCKS FOR 32, 50

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 156|Page

CHECKING INVALID INDEX NUMBER 59

IT7411 – OS LABORATORY (4/8 B.TECH – IT) 157|Page

CHECKING ALREADY ALLOCATED INDEX NUMBERS 14, 25

RESULT

 Thus the file allocation strategies like sequential and indexed file

allocation methods have been executed successfully.

